华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (6): 106-113,133.doi: 10.12141/j.issn.1000-565X.190860

• 计算机科学与技术 • 上一篇    下一篇

基于足迹图像的 FtH-Net 预测身高方法

王年1 樊旭晨1 张玉明1鲁玺龙2 陈峰1   

  1. 1. 安徽大学 电子信息工程学院,安徽 合肥 230601; 2. 公安部物证鉴定中心,北京 100038
  • 收稿日期:2019-11-25 修回日期:2020-01-26 出版日期:2020-06-25 发布日期:2020-06-01
  • 通信作者: 王年(1966-),男,博士,教授,主要从事计算机视觉与模式识别研究。 E-mail:wn_xlb@ahu.edu.cn
  • 作者简介:王年(1966-),男,博士,教授,主要从事计算机视觉与模式识别研究。
  • 基金资助:
    国家重点研发计划重点专项 (2018YFC0807302); 国家自然科学基金资助项目 (61772032); 科技强警基础工作专项 (2018GABJC15); 中央级公益性科研院所基本科研业务费专项 (2018JB018); 痕迹重点实验室开放课题(2017FMKFKT08)

FtH-Net Method for Predicting Height Based on Footprint Image

WANG Nian1 FAN Xuchen1 ZHANG Yuming1 LU Xilong2 CHEN Feng1   

  1. 1. School of Electronics and Information Engineering,Anhui University,Hefei 230601,Anhui,China;2. Institute of Forensic Science,Ministry of Public Security,Beijing 100038,China
  • Received:2019-11-25 Revised:2020-01-26 Online:2020-06-25 Published:2020-06-01
  • Contact: 王年(1966-),男,博士,教授,主要从事计算机视觉与模式识别研究。 E-mail:wn_xlb@ahu.edu.cn
  • About author:王年(1966-),男,博士,教授,主要从事计算机视觉与模式识别研究。
  • Supported by:
    Supported by the Key Research and Development Program of China (2018YFC0807302) and the National Na-tural Science Foundation of China (61772032)

摘要: 为解决在刑侦领域需要通过脚印信息预测身高的问题,文中提出一种基于深度学习的回归预测算法。该算法首先对原始数据进行预处理来得到适用于深度学习回归模型的数据集,然后根据足迹数据的特性提出了一种由边缘提取和回归预测两个部分组成的新型网络架构 FtH-Net (Foot to Height-Net),最后基于预处理得到的数据集和 FtH-Net训练得到一个性能良好的预测模型。实验结果表明,相比于传统方法,该方法在保证模型泛化能力的同时大幅度提升了预测的准确率,预测身高 2 cm 以内的准确率达到了67%。

关键词: 刑侦, 深度学习, 足迹图像, 身高预测, 回归模型

Abstract: A regression prediction algorithm based on deep learning was proposed to solve the problem of predicting height through footprint information in criminal investigation. Firstly,the original data was preprocessed to obtain the data set suitable for the deep learning regression model. Secondly,a new network architecture foot to height-net (FtH-Net) containing edge extraction and regression was proposed according to the characteristics of the footprint data. Finally,a prediction model with good performance was achieved by the data set based on the first two steps and regression network training. The experimental results show that,compared with the traditional one,the new method can greatly improve the accuracy of prediction while ensuring the generalization ability of the model,and the accuracy of prediction for people within 2cm height can reach 67%.

Key words: criminal investigation, deep learning, footprint image, height prediction, regression model