华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (12): 105-113.doi: 10.12141/j.issn.1000-565X.200316

• 人工智能专题 • 上一篇    下一篇

基于样本分布加权跨域极限学习机的电子鼻漂移补偿

闫嘉1,2 陈飞越3 易若男3 王子健3   

  1. 1. 智能传动和控制技术国家地方联合工程实验室 ( 重庆) ,重庆 400715; 2. 西南大学 人工智能学院,重庆 400715; 3. 西南大学 电子信息工程学院,重庆 400715
  • 收稿日期:2020-06-15 修回日期:2020-07-08 出版日期:2020-12-25 发布日期:2020-12-01
  • 通信作者: 闫嘉 ( 1983-) ,男,博士,副教授,主要从事人工智能和机器学习研究。 E-mail:yanjia119@swu.edu.cn
  • 作者简介:闫嘉 ( 1983-) ,男,博士,副教授,主要从事人工智能和机器学习研究。
  • 基金资助:

    国家重点研发计划项目 ( 2018YFB1306603) ; 国家自然科学基金资助项目 ( 61672436)

Drift Compensation for Electronic Nose Based on Sample Distribution Weighting Cross Domain Extreme Learning Machine

YAN Jia1,2 CHEN Feiyue3 YI Ruonan3 WANG Zijian3   

  1. 1. National & Local Joint Engineering Laboratory of Intelligent Transmission and Control Technology ( Chonging) , Chonging 400715,China; 2. College of Artificial Intelligence,Southwest University,Chongqing 400715,China; 3. College of Electronic and Information Engineering,Southwest University,Chongqing 400715,China
  • Received:2020-06-15 Revised:2020-07-08 Online:2020-12-25 Published:2020-12-01
  • Contact: 闫嘉 ( 1983-) ,男,博士,副教授,主要从事人工智能和机器学习研究。 E-mail:yanjia119@swu.edu.cn
  • About author:闫嘉 ( 1983-) ,男,博士,副教授,主要从事人工智能和机器学习研究。
  • Supported by:
    Supported by the National Key Research and Development Program of China ( 2018YFB1306603) and the National Natural Science Foundation of China ( 61672436)

摘要:

针对电子鼻应用中传感器漂移现象导致的电子鼻分类准确率降低问题,文中提 出一种基于样本分布加权的跨域极限学习机模型。该模型考虑到单个样本对全局分布差 异度量的贡献度不同,以基于样本分布加权的最大均值差异作为衡量领域间样本分布差 异的度量,将源域和目标域数据投影到高维的极限学习机特征空间中,然后寻找一个合 适的投影方向,将特征空间中的数据映射到一个公共子空间中,使得子空间中源域数据 和目标域数据具有相似的分布。使用 Matlab 对该算法进行仿真,并对比不同的隐含层 节点数对该算法识别率的影响,以验证该算法的可行性。结果表明,文中提出的算法模 型可以明显减小两个域间数据的分布差异,满足传统的分类学习算法对训练和测试数据 的分布要求,从而提高电子鼻的分类准确率。

关键词: 极限学习机, 子空间学习, 样本分布加权, 漂移补偿, 电子鼻

Abstract:

To solve the problem of low classification accuracy of electronic nose ( E-nose) caused by sensor drift in various applications,a sample distribution weighting cross domain extreme learning machine model was proposed. Considering the different contributions of a single sample to the global distribution discrepancy measure,it uses the maximum mean discrepancy based on the sample distribution weighting as a measure of the sample distribution discrepancy between domains. The data of source domain and target domain were projected onto a high-dimensional extreme learning machine feature space. Then a suitable projection direction was found,by which the data was projected onto a common subspace. Thus the source domain and target domain data in the subspace had a similar distribution. Matlab was used to simulate this algorithm,and the effects of different number of hidden layer nodes on the recognition rate of the algorithm were compared so as to verify the feasibility of the algorithm. The results show that the model proposed in this paper can significantly reduce the distribution discrepancies between the two domains,and can meet the distribution requirements of traditional classification algorithms for training and test data,thus to improve the classification accuracy of E-nose.

Key words: extreme learning machine, subspace learning, sample distribution weighting, drift compensation, electronic nose

中图分类号: