华南理工大学学报(自然科学版) ›› 2016, Vol. 44 ›› Issue (5): 123-129.doi: 10.3969/j.issn.1000-565X.2016.05.019

• 计算机科学与技术 • 上一篇    下一篇

基于字典学习与稀疏表达分类的低质量字符识别

郝宁波1,2 廖海斌3† 杨杰1   

  1. 1. 武汉理工大学 信息工程学院,湖北 武汉 430070; 2. 黄淮学院 国际学院,河南 驻马店 463000; 3. 湖北科技学院 计算机科学与技术学院,湖北 咸宁 437100
  • 收稿日期:2015-10-08 修回日期:2016-01-06 出版日期:2016-05-25 发布日期:2016-04-12
  • 通信作者: 廖海斌(1982-),男,博士,讲师,主要从事图像处理与模式识别研究. E-mail:liao_haibing@163.com
  • 作者简介:郝宁波(1977-),男,博士生,副教授,主要从事软件开发、图像处理与模式识别研究. E-mail:hnb79@163. com
  • 基金资助:
    中国博士后科学基金面上项目(2015M582355);公安部科技攻关项目(SN20110001)

Low-Quality Characters Recognition Based on Dictionary Learning and Sparse Representation

HAO Ning-bo1,2 LIAO Hai-bin3 YANG Jie1   

  1. 1.School of Information Engineering,Wuhan University of Technology,Wuhan 430070,Hubei,China; 2.International College,Huanghuai University,Zhumadian 463000,Henan,China; 3.School of Computer Science and Technology,Hubei University of Science and Technology,Xianning 437100,Hubei,China
  • Received:2015-10-08 Revised:2016-01-06 Online:2016-05-25 Published:2016-04-12
  • Contact: 廖海斌(1982-),男,博士,讲师,主要从事图像处理与模式识别研究. E-mail:liao_haibing@163.com
  • About author:郝宁波(1977-),男,博士生,副教授,主要从事软件开发、图像处理与模式识别研究. E-mail:hnb79@163. com
  • Supported by:
    Supported by the General Program of the National Science Foundation for Post-Doctoral Scientists of China (2015M582355)

摘要: 为解决低质量字符中的断笔、噪声和模糊问题,以及不同字体与字号的字符识别问题,提出了基于字典学习与稀疏表达分类的低质量字符识别方法. 首先,收集不同字体和字号的字符样本构建字符超完备字典;然后,对测试字符进行稀疏表达建模,并根据求解的稀疏系数进行字符分类. 为了使字典更具鉴别性,文中提出了基于因子分析的字典学习方法. 实验结果表明,文中所提方法不仅可以同时识别不同字体和字号的字符,还具有对断笔、噪声和模糊的鲁棒性.

关键词: 字符识别, 字典学习, 稀疏表达, 因子分析

Abstract: In order to recognize low-quality characters with interrupted strokes,noise and fuzziness,and to recog- nize characters with different fonts and sizes,a method to recognize low-quality characters on the basis of dictionary learning and sparse representation is proposed.Firstly,character samples with different fonts and sizes are collected to construct a super-complete dictionary of characters.Then,a sparse representation model is established by using test characters,and a character classification is made according to the solved sparse representation coefficient.Ad- ditionally,in order to make the dictionary more discriminating,a dictionary learning method on the basis of factor analysis is proposed.Experimental results show that the proposed method not only can identify characters with different fonts and sizes but also possesses robustness to interrupted strokes,noise and fuzziness.

Key words: character recognition, dictionary learning, sparse representation, factors analysisanalysis

中图分类号: