华南理工大学学报(自然科学版) ›› 2013, Vol. 41 ›› Issue (1): 15-20.doi: 10.3969/j.issn.1000-565X.2013.01.003

• 电子、通信与自动控制 • 上一篇    下一篇

基于自适应反步法的自主水下机器人变深控制

贾鹤鸣1 宋文龙2 陈子印3   

  1. 1. 东北林业大学 机电工程学院, 黑龙江 哈尔滨 150040; 2. 哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001
  • 收稿日期:2012-01-11 修回日期:2012-04-29 出版日期:2013-01-25 发布日期:2012-12-03
  • 通信作者: 宋文龙(1973-),男,博士,教授,主要从事林业智能控制与检测技术研究. E-mail:wlsong139@126.com
  • 作者简介:贾鹤鸣(1983-),男,博士,副教授,主要从事非线性控制理论及应用研究.E-mail:jiaheminglucky99@126.com
  • 基金资助:

    东北林业大学中央高校基本科研业务费专项资金资助项目(DL13BB14);教育部“新世纪优秀人才支持计划冶项目(NCET-10-0279);国家自然科学基金资助项目(30972424)

Diving Control of Autonomous Underwater Vehicle Based on AdaptiveBackstepping Method

Jia He-ming1 Song Wen-long1 Chen Zi-yin2   

  1. 1. College of Electromechanical Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China;2. College of Automation, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • Received:2012-01-11 Revised:2012-04-29 Online:2013-01-25 Published:2012-12-03
  • Contact: 宋文龙(1973-),男,博士,教授,主要从事林业智能控制与检测技术研究. E-mail:wlsong139@126.com
  • About author:贾鹤鸣(1983-),男,博士,副教授,主要从事非线性控制理论及应用研究.E-mail:jiaheminglucky99@126.com
  • Supported by:

    东北林业大学中央高校基本科研业务费专项资金资助项目(DL13BB14);教育部“新世纪优秀人才支持计划冶项目(NCET-10-0279);国家自然科学基金资助项目(30972424)

摘要: 为实现自主水下机器人(AUV)的高精度变深控制,基于AUV 垂直面的运动学和非线性动力学模型,提出了神经网络自适应迭代反步控制方法,设计了运动学和动力学控制器. 文中首先考虑AUV 非线性模型的攻角和水动力阻尼系数的不确定性,设计神经网络控制器来对纵倾运动中的非线性水动力阻尼项和外界海流干扰作用进行在线估计,并基于Lyapunov 稳定性理论设计神经网络权值的自适应律,保证系统闭环信号的一致最终有界. 最后通过两组仿真实验,比较了所设计的控制器在设定控制器增益参数下的系统响应和在扰动作用下的变深控制性能,结果表明,所设计的控制器具有较小的稳态误差和较高的跟踪精度.

关键词: 自主水下机器人, 变深控制, 反步法, 神经网络, 自适应方法

Abstract:

In order to implement precise diving control of the autonomous underwater vehicle (AUV), according tothe kinematic and nonlinear dynamic model of AUV, an adaptive iterative backstepping method based on neuralnetwork is proposed, and a kinematic and dynamic controller is designed. In the investigation, considering theexistence of attack angle and the uncertainties of hydrodynamic damping parameters of the nonlinear model of AUV,a neural network-based controller is designed to on-line estimate the nonlinear hydrodynamic damping terms existingin the pitch motion together with external ocean current disturbances. Then, the adaptive law of the network weightsis presented based on the Lyapunov stability theory to guarantee the uniform ultimate bounding of all signals in theclosed-loop system. Finally, two groups of simulation experiments are carried out to compare the system response ofthe designed controller at a certain control gain and the diving control performance in the presence of disturbances.The results show that the designed controller is of smaller static error and higher tracking precision.

Key words: autonomous underwater vehicle, diving control, backstepping method, neural network, adaptivemethod