华南理工大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (9): 81-86,92.

• 电子、通信与自动控制 • 上一篇    下一篇

基于单边SPSA的动态偏差数据驱动控制算法

哀微 朱学峰   

  1. 华南理工大学 自动化科学与工程学院,广东 广州 510640
  • 收稿日期:2011-09-02 修回日期:2012-06-13 出版日期:2012-09-25 发布日期:2012-08-01
  • 通信作者: 哀微(1979-) ,女,博士,讲师,主要从事无模型控制、数据驱动控制研究. E-mail:aiwei@scut.edu.cn
  • 作者简介:哀微(1979-) ,女,博士,讲师,主要从事无模型控制、数据驱动控制研究.
  • 基金资助:

    国家自然科学基金资助项目( 60704012 ) ; 华南理工大学中央高校基本科研业务费专项资金资助项目( 2011ZM0120)

One-Sided SPSA-Based Data-Driven Control Algorithm with Dynamic Deviations

Ai Wei  Zhu Xue-feng   

  1. School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2011-09-02 Revised:2012-06-13 Online:2012-09-25 Published:2012-08-01
  • Contact: 哀微(1979-) ,女,博士,讲师,主要从事无模型控制、数据驱动控制研究. E-mail:aiwei@scut.edu.cn
  • About author:哀微(1979-) ,女,博士,讲师,主要从事无模型控制、数据驱动控制研究.
  • Supported by:

    国家自然科学基金资助项目( 60704012 ) ; 华南理工大学中央高校基本科研业务费专项资金资助项目( 2011ZM0120)

摘要: 当受控系统的数学模型完全未知时,应用同时扰动随机逼近算法( SPSA) 建立数据驱动控制方法是比较可行的.文中对SPSA 及其改进算法的原理和有效性进行了研究,分析了其在面向控制中的梯度逼近效率不高等不足,提出了一种针对控制问题的单边SPSA 算法,该算法在实际控制中节约1 /3 的数据,使得其收敛速度和精度能够适用于控制问题.然后将单边SPSA 与数据驱动控制方法相结合,提出了基于动态历史偏差的数据利用方案,对神经网络结构的函数逼近器进行直接自适应权值调整.仿真结果表明,该数据驱动方法完全不依赖于模型,对非线性系统进行了良好的控制.

关键词: 同时扰动随机逼近, 数据驱动控制, 梯度逼近, 单边SPSA, 数据利用, 非线性系统

Abstract:

Using simultaneous-perturbation stochastic approximation ( SPSA) algorithm to establish a data-driven control method is feasible when the mathematical models of controlled systems are totally unknown. In this paper,the principle and effectiveness of both the SPSA algorithm and its improved algorithms are investigated,and the shortcomings of the SPSA algorithm in the control-oriented situation,such as lower gradient approximation efficiency,are analyzed. Then,a one-sided SPSA algorithm is proposed for the control problem,which saves one-third data
compared with the SPSA algorithm in the actual control,thus obtaining enough convergence rate and accuracy of the optimization procedure for the control problem. Then,by combining the one-sided SPSA algorithm and the datadriven control method,a data utilization scheme is designed based on dynamic deviations,and the connection weights in a neural network function approximator are adjusted directly and adaptively. Simulatied results show that the proposed data-driven control method secures excellent control over nonlinear systems without the help of any model.

Key words: simultaneous-perturbation stochastic approximation, data-driven control, gradient approximation, onesided SPSA, data utilization, nonlinear systems

中图分类号: