华南理工大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (6): 1-5.
• 电子、通信与自动控制 • 下一篇
贺前华 何俊 李艳雄 王志峰
He Qian-hua He Jun Li Yan-xiong Wang Zhi-feng
摘要: 针对人为设定最优采样延迟不能客观反映信号采样延迟和固定相关维数不易描述病变异常语音复杂性的缺陷,文中提出一种基于相关维数的病变连续语音检测算法.该算法在语音信号合理采样延迟区间内不断调整采样延迟,搜索使正常语音与病变连续语音的区分等错误率达到最小的嵌入相关维数,以避免设定采样延迟的缺陷.同时,通过将相关维数曲线划分成子区间,并判定子区间的稳定性,以达到不固定嵌入相关维数的目的.最后,对每个合理采样延迟时间内获取的训练语音的最优相关维数进行等错误率分析,选用具有最小等错误率的相关维数及对应的采样延迟为文中混沌参数,为测试语音提取混沌指数进行正异常区分.实验结果表明,该算法的区分正确率为75.6%,分别比GMM-SVM、Shimmer、固定相关维和采样延迟法、SHR 算法和Jitter 算法提高7.8%、9.3%、16.0%、18.0%和20.4%.