华南理工大学学报(自然科学版) ›› 2011, Vol. 39 ›› Issue (5): 55-60,67.doi: 10.3969/j.issn.1000-565X.2011.05.010

• 电子、通信与自动控制 • 上一篇    下一篇

基于改进JIT软测量建模及在污水处理的应用

刘乙奇 黄道平 李艳   

  1. 华南理工大学 自动化科学与工程学院,广东 广州 510640
  • 收稿日期:2010-07-29 修回日期:2010-11-21 出版日期:2011-05-25 发布日期:2011-04-01
  • 通信作者: 刘乙奇(1983-),男,博士生,主要从事智能检测研究 E-mail:liuyiqi769@sina.com
  • 作者简介:刘乙奇(1983-),男,博士生,主要从事智能检测研究
  • 基金资助:

    国家自然科学基金资助项目(60704012);华南理工大学中央高校基本科研业务费资助项目(2009ZM0161)

Enhanced JIT-Based Soft-Sensing Modeling and Its Application to Wastewater Treatment

Liu Yi-qi  Huang Dao-ping  Li Yan   

  1. School of Computer Science and Engineering,South China University of Technology,Guangzhou 510006,Guangdong,China
  • Received:2010-07-29 Revised:2010-11-21 Online:2011-05-25 Published:2011-04-01
  • Contact: 刘乙奇(1983-),男,博士生,主要从事智能检测研究 E-mail:liuyiqi769@sina.com
  • About author:刘乙奇(1983-),男,博士生,主要从事智能检测研究
  • Supported by:

    国家自然科学基金资助项目(60704012);华南理工大学中央高校基本科研业务费资助项目(2009ZM0161)

摘要: 为解决污水生化处理过程中的水质参数BOD5(5天生化需氧量)难以在线监测的难题,在充分考虑污水处理过程非线性和多变量耦合的基础上,结合Jolliffe参数和数据选择算法提出了鲁棒最近相关性算法,并将其与RPLS(迭代偏最小二乘)和线性偏差补偿等算法相结合,对JIT(Just-in-Time)在线学习算法进行了改进,最后将改进的JIT算法用于建立BOD5软测量模型。对现场数据的仿真结果表明,与传统JIT算法和RPLS法相比,文中方法提高了软测量的在线预测精度、自适应性和鲁棒性。

关键词: 软测量JIT算法, 生化需氧量, 污水处理, 迭代偏最小二乘

Abstract:

In order to overcome the difficulty in on-line measurement of five-day biochemical oxygen demand ( BOD5) during the wastewater treatment,by taking into consideration the nonlinearity and multivariant coupling characteristics of wastewater treatment process,a robust nearest correlation algorithm based on Jolliffe parameters and correlation data selection algorithm is proposed,which is then combined with the recursive partial least square
algorithm and the linear bias compensation algorithm to improve the conventional JIT ( Just-in-Time) algorithm. Finally,the enhanced JIT algorithm is used to build an on-line soft-sensing model of BOD5. The results of simulation show that the enhanced JIT algorithm outperforms the conventional JIT and RPLS algorithms in terms of on-line prediction accuracy,adaptability and robustness of soft sensing.

Key words: soft sensing, JIT algorithm, biochemical oxygen demand, wastewater treatment, recursive partial least square