华南理工大学学报(自然科学版) ›› 2011, Vol. 39 ›› Issue (12): 56-62.

• 计算机科学与技术 • 上一篇    下一篇

基于小波包框架子带互补特征提取的纹理分割

王庆香 李迪 张舞杰 叶峰   

  1. 华南理工大学 机械与汽车工程学院,广东 广州 510640
  • 收稿日期:2010-08-09 修回日期:2011-07-18 出版日期:2011-12-25 发布日期:2011-11-04
  • 通信作者: 王庆香(1975-) ,男,博士生,广州中医药大学副教授,主要从事机器视觉检测、模式识别等的研究. E-mail:wang-q-x@163.com
  • 作者简介:王庆香(1975-) ,男,博士生,广州中医药大学副教授,主要从事机器视觉检测、模式识别等的研究.
  • 基金资助:

    广东省科技攻关项目( 2008B01040004) ; 广东省医学科研基金资助项目( A2011218)

Texture Segmentation Based on Complementary Feature Extraction of Wavelet Packet Frame Sub-Band

Wang Qing-xiang  Li Di  Zhang Wu-jie  Ye Feng   

  1. School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2010-08-09 Revised:2011-07-18 Online:2011-12-25 Published:2011-11-04
  • Contact: 王庆香(1975-) ,男,博士生,广州中医药大学副教授,主要从事机器视觉检测、模式识别等的研究. E-mail:wang-q-x@163.com
  • About author:王庆香(1975-) ,男,博士生,广州中医药大学副教授,主要从事机器视觉检测、模式识别等的研究.
  • Supported by:

    广东省科技攻关项目( 2008B01040004) ; 广东省医学科研基金资助项目( A2011218)

摘要: 针对多纹理图像较难准确分割的问题,提出了基于小波包框架子带互补特征提取的纹理分割方法.该方法利用小波包框架对原始纹理图像进行分解,对所得子带系数在每个像素的邻域窗口提取两类特征——平均绝对偏差及子带系数梯度方向直方图的均值与标准差,并利用改进的空间模糊c 均值聚类方法对纹理像素进行聚类.由于此方法考虑了像素特征值局部标准差的空间分布,因此所得分割结果在纹理边界处的像素误分类率较低.以多幅Brodatz 纹理图像进行相应的实验对比测试.Fisher 线性判别分析实验显示,两类特征的组合比单一特征具有更强的纹理区别能力; 纹理分割实验表明,文中设计的分割方案能实现较高的分割准确率; 算法运行速度测试表明,文中方法是实用的.

关键词: 纹理分割, 小波包框架, 梯度方向直方图, 空间模糊c 均值聚类

Abstract:

As multi-texture images are difficult to segment accurately,this paper proposes a texture segmentation method based on the complementary feature extraction of wavelet packet frame sub-band. In this method,first,the original texture image is decomposed by using the wavelet packet frame. Then,two sets of features in the neighborhood window of each pixel,namely,the average absolute deviation of sub-band coefficients and the mean and
standard deviation of the histogram of oriented gradients for sub-band coefficients,are extracted for each sub-band coefficient. Moreover,texture pixels are clustered via the improved spatial fuzzy c-means clustering. As the proposed method takes into consideration the spatial distribution of the local standard deviation of pixel feature values,it helps to obtain texture segmentation results with low misclassification rate of pixels near the texture boundary. Finally,several texture images from Brodatz album are used to test the proposed method. Fisher linear discriminant analysis indicates that the combination of the two sets of features is more effective in texture distinction than any single feature. Texture segmentation experiments show that the proposed segmentation scheme helps to achieve higher segmentation accuracy. In addition,test results of algorithm speed prove that the proposed method is applicable.

Key words: texture segmentation, wavelet packet frame, histogram of oriented gradients, spatial fuzzy c-means clustering