华南理工大学学报(自然科学版) ›› 2010, Vol. 38 ›› Issue (6): 66-72.doi: 10.3969/j.issn.1000-565X.2010.06.013
刘美 黄道平
Liu Mei Huang Dao-ping
摘要: 为解决WSN多目标跟踪节点任务分配的竞争冲突问题,提出一种融合了模糊聚类的多弹性子模自组织神经网络节点任务分配方法.通过模糊聚类估计目标数量,建立节点任务分配跟踪精度和能量消耗的综合性能指标,采用非全连接的环形弹性结构自组织神经网络优化监测联盟,用最近邻法对神经元弹性子模进行初始化,根据胜者为王原则动态调整子模的感受域,以快速锁定最优监测联盟,实现多目标的精确跟踪.实验结果表明:文中方法能有效解决多目标跟踪节点任务分配的竞争冲突问题,以及竞争冲突时的系统能耗增加与实时性问题;在随机均匀部署节点拓扑和目标直线运动模式下,文中方法的能耗较最近邻法降低了48.2%~55.9%,较未改进弹性神经网络法降低了37.4%~42.5%,且运算速度提高了19.0%~27.4%.