华南理工大学学报(自然科学版) ›› 2010, Vol. 38 ›› Issue (10): 7-13.doi: 10.3969/j.issn.1000-565X.2010.10.002

• 电子、通信与自动控制 • 上一篇    下一篇

基于CSP-BPSO的脑-机接口电极选择

吕俊   

  1. 华南理工大学 自动化科学与工程学院, 广东 广州 510640
  • 收稿日期:2010-03-08 修回日期:2010-04-13 出版日期:2010-10-25 发布日期:2010-10-25
  • 通信作者: 吕俊(1979-),男,博士后,主要从事脑-机接口和模式识别研究. E-mail:rylj@163.com
  • 作者简介:吕俊(1979-),男,博士后,主要从事脑-机接口和模式识别研究.
  • 基金资助:

    广东省自然科学基金资助项目(9251064101000012)

Electrode Selection of Brain-Computer Interface Based on CSP-BPSO

Lü Jun   

  1. School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2010-03-08 Revised:2010-04-13 Online:2010-10-25 Published:2010-10-25
  • Contact: 吕俊(1979-),男,博士后,主要从事脑-机接口和模式识别研究. E-mail:rylj@163.com
  • About author:吕俊(1979-),男,博士后,主要从事脑-机接口和模式识别研究.
  • Supported by:

    广东省自然科学基金资助项目(9251064101000012)

摘要: 在与运动相关的脑机接口(BCI)中,安置不必要的电极可能会引入伪迹,不利于特征提取和分类.为此,文中提出一种基于共空间模式(CSP)和二进制粒子群优化(BPSO)的电极选择方法.该方法在提取高区分度特征的同时限制电极数量,并依据CSP滤波器的权值调整初始电极组合的生成概率,以提高BPSO的收敛速度.实验结果表明:采用文中方法,选择少数电极即可获得令人满意的分类精度.

关键词: 脑-机接口, 共空间模式, 二进制粒子群优化算法, 电极选择

Abstract:

For motion-related brain-computer interfaces(BCIs),some artifacts may be imported due to the setting of unnecessary electrodes,which is unfavorable to the feature extraction and classification.In order to solve this problem,an electrode selection method based on the common spatial pattern(CSP) and the binary particle swarm optimization(BPSO) is proposed,which extracts features with high discriminant ability and limits the number of electrodes at the same time.Moreover,in order to accelerate the convergence of BPSO,the generation probability of initial electrode combinations is adjusted according to the weights of CSP filters.Experimental results show that high classification accuracies can be achieved only with few electrodes.

Key words: brain-computer interface, common spatial pattern, binary particle swarm optimization algorithm, electrode selection