华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (9): 62-66.

• 电子、通信与自动控制 • 上一篇    下一篇

一种植入式神经控制信号传输的数据编码方法

吴朝晖 梁志明 李斌   

  1. 华南理工大学 电子与信息学院, 广东 广州 510640
  • 收稿日期:2009-03-19 修回日期:2009-07-27 出版日期:2009-09-25 发布日期:2009-09-25
  • 通信作者: 吴朝晖(1971-),男,博士,讲师,主要从事模拟集成电路、生物电子研究. E-mail:phzhwu@scut.edu.cn
  • 作者简介:吴朝晖(1971-),男,博士,讲师,主要从事模拟集成电路、生物电子研究.
  • 基金资助:

    广东省自然科学基金博士启动基金项目(8451064101000302)

A Data Coding Method for Transmitting Implantable Neural Control Signals

Wu Zhao-hui  Liang Zhi-ming  Li Bin   

  1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2009-03-19 Revised:2009-07-27 Online:2009-09-25 Published:2009-09-25
  • Contact: 吴朝晖(1971-),男,博士,讲师,主要从事模拟集成电路、生物电子研究. E-mail:phzhwu@scut.edu.cn
  • About author:吴朝晖(1971-),男,博士,讲师,主要从事模拟集成电路、生物电子研究.
  • Supported by:

    广东省自然科学基金博士启动基金项目(8451064101000302)

摘要: 采用差分编码的方式将神经控制信号传送至植入式神经信号获取系统的体内模块时,需要体内、体外模块的时钟高度同步,这使得电路的设计非常困难.文中提出了一种新的数据编码传送方法——在体外模块用脉宽调制的方法将需要传送的数据进行编码,通过二进制相移键控(BPSK)调制和解调方式传送到体内模块后,使用时钟检测器、时钟分频器、脉冲宽度计数器以及脉冲逻辑判决器进行解码,这样体内模块和体外模块可以工作在不同时钟频率,使得电路的设计和验证大为简化.该方法已经成功应用于无线植入式神经信号获取系统的板级电路中,波形测试的结果显示了该方法的可行性.经过M序列发生器所产生的1MB随机数据的传输测试未发现有误码产生,表明所设计的编解码方式具有较高的可靠性.

关键词: 数据编码, 脉宽调制, 神经控制信号, 无线传输, 植入式系统

Abstract:

In the transmission of neural control signals to the internal module of a implantable neural-signal acquisition system using the differential coding method,high clock synchronization between the internal and the external systems is required,which makes the circuit design extremely difficult.In order to solve this problem,a new data coding method is presented.In the external module,control signals coded by pulse-width modulation are transmitted to the internal module through binary phase shift keying(BPSK)modulation and demodulation, and the clock detector, clock divider, pulse width counter and pulse logic judger are used to decode the signals. Thus, both the internal and the external modules can work at asynchronous system clock frequencies, and the circuit design and verification are greatly simplified. The new coding method has been successfully applied to a board circuit system for wireless implantable neural-signal acquisition, and the waveform test results verify the feasibility of the method. Moreover, no error has been found in the transmission test of 1 000 000 B random data produced by a M-sequence generator, thus coming to the conclusion that the proposed coding method is highly reliable.

Key words: data coding, pulse-width modulation, neural control signal, wireless transmission, implantable system