华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (5): 73-78.

• 电子、通信与自动控制 • 上一篇    下一篇

基于模态辨识的原油含水率智能组合测量模型

张冬至胡国清1  夏伯锴2   

  1. 1. 华南理工大学 机械与汽车工程学院, 广东 广州 510640;2. 中国石油大学(华东) 信息与控制工程学院, 山东 东营 257061
  • 收稿日期:2008-03-13 修回日期:2009-02-20 出版日期:2009-05-25 发布日期:2009-05-25
  • 通信作者: 张冬至(1981-),男,博士生,主要从事检测技术与自动化装置、智能信息处理与先进传感器研究. E-mail:dz.z@mail.seut.edu.cn
  • 作者简介:张冬至(1981-),男,博士生,主要从事检测技术与自动化装置、智能信息处理与先进传感器研究.
  • 基金资助:

    华南理工大学优秀博士学位论文创新基金资助项目(200903023)

Intelligent Compound Model for Measuring Water Content of Crude Oil Based on Modal Identification

Zhang Dong-zhi1  Hu Guo-qing1  Xia Bo-kai2   

  1. 1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China; 2. College of Information and Control Engineering, China University of Petroleum (East China), Dongying 257061, Shandong, China
  • Received:2008-03-13 Revised:2009-02-20 Online:2009-05-25 Published:2009-05-25
  • Contact: 张冬至(1981-),男,博士生,主要从事检测技术与自动化装置、智能信息处理与先进传感器研究. E-mail:dz.z@mail.seut.edu.cn
  • About author:张冬至(1981-),男,博士生,主要从事检测技术与自动化装置、智能信息处理与先进传感器研究.
  • Supported by:

    华南理工大学优秀博士学位论文创新基金资助项目(200903023)

摘要: 为提高原油含水率宽量程在线测量的精度,采用一套基于多传感器的油水两相流实验室模拟系统对影响其测量的多个敏感参量进行测定,提出基于粗糙集预处理器、支持向量机分类器和遗传神经网络预测器的原油含水率智能组合测量模型.实验结果表明,该模型在很大程度上解决了油水乳化液模态、温度、矿化度等因素的交叉影响及传感器自身非线性的校正问题,可通过模糊推理与自学习实现油水混合模态辨识。并根据工况的变化调整测量模型参数,有效地提高了原油含水率宽量程在线智能测量的精度.

关键词: 原油, 油水两相流, 粗糙集理论, 模态辨识, 遗传算法, 神经网络, 支持向量机

Abstract:

In order to improve the on-line measuring accuracy and widen the measuring range of water content of crude oil, a simulated multi-sensor measurement system of oil/water two-phase flow is adopted to detect the para- meters influencing the measurement, and an intelligent compound model for measuring the water content is estab- lished by combining the rough set preprocessor, the support vector machine classifier and the genetic neural network predictor. Experimental results show that the proposed model effectively eliminates the cross interference of oil/wa- ter emulsion modal, temperature and salinity content, overcomes the nonlinearity of sensor itself, realizes the modal identification of oil-water mixture via fuzzy reasoning and self-learning, and adjusts the model parameters by changing working conditions adaptively. Thus, the accuracy of on-line intelligent measurement of water content of crude oil is effectively improved in a wide measuring range.

Key words: crude oil, oil/water two-phase flow, rough set theory, modal identification, genetic algorithm, neural network, support vector machine