华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (4): 1-6.

• 计算机科学与技术 •    下一篇

基于目标进化的aiNet聚类算法

郭建华 邓飞其 杨海东   

  1. 华南理工大学 自动化科学与工程学院, 广东 广州 510640
  • 收稿日期:2008-04-14 修回日期:2008-05-28 出版日期:2009-04-25 发布日期:2009-04-25
  • 通信作者: 郭建华(1972-),男,博士生,主要从事信息安全、信息系统工程研究. E-mail:gjh209@163.com
  • 作者简介:郭建华(1972-),男,博士生,主要从事信息安全、信息系统工程研究.
  • 基金资助:

    广东省工业科技攻关计划项目(20078010200046);高等学校博士学科点专项科研基金资助项目(20070561081)

aiNet Clustering Algorithm Based on Objective Evolution

Guo Jian-hua  Deng Fei-qi  Yang Hai-dong   

  1. School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2008-04-14 Revised:2008-05-28 Online:2009-04-25 Published:2009-04-25
  • Contact: 郭建华(1972-),男,博士生,主要从事信息安全、信息系统工程研究. E-mail:gjh209@163.com
  • About author:郭建华(1972-),男,博士生,主要从事信息安全、信息系统工程研究.
  • Supported by:

    广东省工业科技攻关计划项目(20078010200046);高等学校博士学科点专项科研基金资助项目(20070561081)

摘要: 针对aiNet算法中没有定义目标函数、记忆网络动态无规律变化等问题,提出了基于目标进化的人工免疫网络聚类新算法,将人工免疫网络压缩聚类抽象为多目标规划问题,定义了记忆网络的整体进化目标,并采用疫苗注射策略提升免疫学习质量.中心聚类和非线性聚类的仿真结果表明:新算法的聚类质量、压缩质量、参数敏感性等优于原aiNet算法;新算法的平均类散布矩阵迹为4.1420,低于原aiNet的4.2575;样本压缩率比原aiNet算法高8.42%;聚类正确率对压缩阈值的敏感性比原aiNet算法弱.

关键词: 人工免疫网络, 目标进化, 聚类分析, 数据压缩

Abstract:

As the aiNet algorithm has no objective function and possesses a memory network with irregular and dynamic change, a new clustering algorithm of artificial immune network based on the objective evolution is proposed and is marked as OE-aiNet. In this algorithm, the compression and clustering based on artificial immune network is abstracted as a multi-objective planning problem, the objectives to which the memory network evolves is defined, and the quality of immunity learning is improved by adopting the vaccination strategy. Simulated results of kernel clustering and nonlinear clustering prove that  OE-aiNet is better than the existing aiNet algorithm in terms of clustering quality, compression quality and parameter sensitivity;  the average trace of class spread matrix of OE-aiNet, namely 4. 1420, is less than that of aiNet (4. 2575) ;  the compression ratio of OE-aiNet is 8.42% higher than that of aiNet; and  the clustering accuracy of OE-aiNet is not as sensitive to the compression threshold as that of aiNet

Key words: artificial immune network, objective evolution, clustering analysis, data compression