华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (2): 77-81.

• 交通运输工程 • 上一篇    下一篇

一种曲线形态的描述与识别方法及其应用

林培群 徐建闽   

  1. 华南理工大学 土木与交通学院, 广东 广州 510640
  • 收稿日期:2007-12-29 修回日期:1900-01-01 出版日期:2009-02-25 发布日期:2009-02-25
  • 通信作者: 林培群(1980.),男,讲师,博士,主要从事智能交通系统、图像处理等的研究. E-mail:pqlin@scut.edu.cn
  • 作者简介:林培群(1980.),男,讲师,博士,主要从事智能交通系统、图像处理等的研究.
  • 基金资助:

    国家自然科学基金资助项目(50578064);广州市科技攻关项目(200722-D3111)

A Description and Recognition Method of Curve Configuration and Its Application

Lin Pei-qun  Xu Jian-min   

  1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2007-12-29 Revised:1900-01-01 Online:2009-02-25 Published:2009-02-25
  • Contact: 林培群(1980.),男,讲师,博士,主要从事智能交通系统、图像处理等的研究. E-mail:pqlin@scut.edu.cn
  • About author:林培群(1980.),男,讲师,博士,主要从事智能交通系统、图像处理等的研究.
  • Supported by:

    国家自然科学基金资助项目(50578064);广州市科技攻关项目(200722-D3111)

摘要: 为准确描述与识别时间序列曲线形态,根据曲线段类型定义了5个语素和1个通配符,进而定义语素向量及通配符向量,使得对曲线的描述具有层次性.据此将任意时间序列曲线转变为对应的二维表,二维表第二列组成的字符串能够进行初级的模板匹配,二维表各行所代表的向量增强了语素关系运算的能力,可实现较深入的模式识别.在经典回溯法的启发下设计了一种属性约束下的带通配符字符串匹配算法,并以基于感应线圈信号曲线的车型分类为例,验证了所提出的方法的有效性和合理性.

关键词: 时间序列曲线, 形态描述, 形态识别, 字符串匹配, 车型识别

Abstract:

In order to correctly describe and recognize the configuration of a time series crave (TSC) , five morphemes and one wildcard are defined according to the curve segment types, and the corresponding morpheme vector and the wildcard vector are defined for the hierarchical description of the curve. Then, one TSC is transformed into a 2D table. The second colmnn of the table makes up of a string that can effect the elementary pattern matching and the rows of the table represent the attribute vectors that can enhance the morpheme-relational operation, thus reali- zing a more complex pattern matching at the next step. Moreover, a string matching arithmetic with attribute re- straints and wildcard strings is proposed based on the classical backtracking method. The method is finally em- ployed to classify vehicles using the TSCs collected from inductive loops in a real traffic scene. The results show that the proposed method is effective and reasonable.

Key words: time series curve, configuration description, configuration recognition, string matching, vehicle classification