华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (10): 101-107.
张大明1 符茂胜1 郭慧2 罗斌1
Zhang Da-ming1 Fu Mao-sheng1 Guo Hui2 Luo Bin1
摘要: 期望最大化(EM)算法是对有限混合模型进行参数估计的通用算法,然而标准EM算法中所需的混合模型分量数往往是未知的.文中研究了一种采用惩罚性最小匹配距离估计分量数的方法,并结合贪婪EM算法框架,提出了一种可以在进行参数估计的同时快速准确地自动估计高斯混合模型分量数的算法,最后通过一元和二元高斯混合模型的仿真实验验证了该算法的有效性.