华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (1): 79-85.

• 电子、通信与自动控制 • 上一篇    下一篇

求解多目标数值优化问题的量子演化算法

杨春 邓飞其 杨海东   

  1. 华南理工大学 自动化科学与工程学院, 广东 广州 510640
  • 收稿日期:2008-01-16 修回日期:2008-04-09 出版日期:2009-01-25 发布日期:2009-01-25
  • 通信作者: 杨春(1976-),男,博士生,主要从事网络安全、系统工程研究. E-mail:yang.tree@gmail.com
  • 作者简介:杨春(1976-),男,博士生,主要从事网络安全、系统工程研究.
  • 基金资助:

    中国博士后科学基金资助项目(20060400752);广东省关键领域重点突破项目(HT2004-0006);华南理工大学自然科学基金资助项目(B08E5060520)

Quantum-Inspired Evolutionary Algorithm to Solve Multi-Objective Numerical Optimization Problems

Yang Chun  Deng Fei-qi  Yang Hai-dong   

  1. School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2008-01-16 Revised:2008-04-09 Online:2009-01-25 Published:2009-01-25
  • Contact: 杨春(1976-),男,博士生,主要从事网络安全、系统工程研究. E-mail:yang.tree@gmail.com
  • About author:杨春(1976-),男,博士生,主要从事网络安全、系统工程研究.
  • Supported by:

    中国博士后科学基金资助项目(20060400752);广东省关键领域重点突破项目(HT2004-0006);华南理工大学自然科学基金资助项目(B08E5060520)

摘要: 为提高多目标数值优化问题解的收敛速度并保持解的多样性,基于多目标优化和量子计算原理,提出了一种量子演化算法.首先,根据多目标优化特点,使用多目标密度比较算子对量子种群进行排序和筛选;然后,应用非均匀变异算子对观测种群进行变异以保持解的收敛性并提高局部搜索的能力;最后,使用多样性保持算子对观测种群进行删减以保持解的多样性.实验结果表明,与NSGA-Ⅱ算法相比,文中算法具有更高的收敛速度和更好的种群多样性.

关键词: 数值优化, 演化算法, 实值编码, 非均匀变异, 平方脉冲

Abstract:

In order to improve the convergence rate and preserve the diversity of the solutions to multi-objective numerical optimization problems, a quantum-inspired evolutionary algorithm is presented based on the principles of quantum computation and multi-objective optimization. In this algorithm, first, a crowed comparison operator is used to sort and select individuals according to the characteristics of multi-objective optimization. Then, a non-uniform mutation operator is applied to the observation populations to preserve the convergency of the solutions and to improve the precision of local search. Finally, a diversity-preserving operator is employed to delete the observation populations for the purpose of preserving the solution diversity. Experimental results show that, as compared with the NSGA-Ⅱ algorithm, the proposed algorithm is of higher convergence rate and better population diversity

Key words: numerical optimization, evolutionary algorithm, real-value coding, non-uniform mutation, square pulse