华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (1): 59-63.

• 电子、通信与自动控制 • 上一篇    下一篇

基于核主成分分析和子空间分类的边缘检测方法

林正春 王知衍   

  1. 华南理工大学 计算机科学与工程学院, 广东 广州 510006
  • 收稿日期:2008-01-31 修回日期:2008-03-12 出版日期:2009-01-25 发布日期:2009-01-25
  • 通信作者: 林正春(1981-),男,博士生,主要从事图像处理与模式识别、计算智能研究. E-mail:linzhengchun@gmail.com
  • 作者简介:林正春(1981-),男,博士生,主要从事图像处理与模式识别、计算智能研究.

Edge Detection Method Based on Kernel Principal Component Analysis and Subspace Classification

Lin Zheng-chun  Wang Zhi-yan   

  1. School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2008-01-31 Revised:2008-03-12 Online:2009-01-25 Published:2009-01-25
  • Contact: 林正春(1981-),男,博士生,主要从事图像处理与模式识别、计算智能研究. E-mail:linzhengchun@gmail.com
  • About author:林正春(1981-),男,博士生,主要从事图像处理与模式识别、计算智能研究.

摘要: 针对传统边缘检测方法对噪声敏感的问题,提出了一种基于核主成分分析和子空间分类的边缘检测方法,建立了统一的图像特征表达模型.首先结合其它边缘检测方法进行采样并将采样结果投影到特征空间,然后将核主成分分析得到的特征向量组成特征空间的一个子空间,最后将子空间分类法推广到特征空间来对数据进行分类.实验结果表明,该方法增强了对噪声的鲁棒性,能适应小样本训练,其边缘检测效果明显优于经典算子、主成分分析和非线性主成分分析方法.

关键词: 边缘检测, 核主成分分析, 子空间分类, 特征空间, 样本选择

Abstract:

In order to enhance the robustness of the traditional edge detection methods to noises, an edge detection method based on the kernel principal component analysis (KPCA) and the subspace classification is proposed, and a unified model to represent image features is established. First, the proposed method combined with other edge detection methods selects samples which map in the feature space, and then builds a subspace in the feature space with the eigenvetors obtained via KPCA..Afterwards, it expands the subspace classification into the feature space for data classification. Experimental results indicate that the proposed method is robust to noises and is suitable for small-sample training, and that the detection accuracy of the method is higher than that of the classical operators, the principal component analysis (PCA) and the nonlinear PCA.

Key words: edge detection, kernel principal component analysis, subspace classification, feature space, sample selection