华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (1): 42-47.

• 电子、通信与自动控制 • 上一篇    下一篇

基于图像块分类的加权结构相似度

杨春玲 何流 魏毅 麦智毅   

  1. 华南理工大学 电子与信息学院, 广东 广州 510640
  • 收稿日期:2007-11-28 修回日期:2008-01-18 出版日期:2009-01-25 发布日期:2009-01-25
  • 通信作者: 杨春玲(1970-),女,副教授,主要从事图像和视频处理研究. E-mail:eeclyang@scut.edu.cn
  • 作者简介:杨春玲(1970-),女,副教授,主要从事图像和视频处理研究.
  • 基金资助:

    国家自然科学基金资助项目(60402015);广东省自然科学基金资助项目(06025642)

Weighted Structural Similarity Based on Block Classification of Image

Yang Chun-ling  He Liu  Wei Yi  Mai Zhi-yi   

  1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2007-11-28 Revised:2008-01-18 Online:2009-01-25 Published:2009-01-25
  • Contact: 杨春玲(1970-),女,副教授,主要从事图像和视频处理研究. E-mail:eeclyang@scut.edu.cn
  • About author:杨春玲(1970-),女,副教授,主要从事图像和视频处理研究.
  • Supported by:

    国家自然科学基金资助项目(60402015);广东省自然科学基金资助项目(06025642)

摘要: 基于结构信息的图像质量评价方法——结构相似度(SSIM)方法计算简单、性能优越,但该方法仅简单地将各子块SSIM的平均值作为整幅图像的平均结构相似度(MSSIM),而人眼对图像不同区域的视觉灵敏度不同.为此,文中提出了一种基于图像块分类的加权平均结构相似度(WSSIM)的图像质量评价方法,即先将图像分块并将子块区分成边缘块、细节块和平滑块三类,然后对不同类型块的SSIM值赋予不同的权值,最后计算得到整幅图像的WSSIM.实验结果证明,文中方法明显优于MSSIM和基于方差加权的SSIM.

关键词: 图像质量, 评价, 结构相似度, 块分类, 加权平均, 人眼视觉系统

Abstract:

Although the Structural Similarity (SSIM) method, a structural information-based method for image quality assessment, performs well with low computational complexity, it is still of some disadvantages because it simply takes the average SSIM of sub-blocks as the mean SSIM (MSSIM) of the whole image without considering the difference of human visual sensitivity in different image areas. In order to solve this problem, this palper proposes a block classification-based image quality assessment method named Weighted Structural Similarity (WSSIM). In this method, an image is separated into some blocks that are further divided into edge blocks, detail blocks and smooth blocks, and the SSIMs of different types of blocks are weighted with different values to calculate the WSSIM of the whole image. Experimental results indicate that the proposed method is superior to the MSSIM method and the variance-based weighted SSIM.

Key words: image quality, assessment, structural similarity, block classification, weighted average, human visual system