华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (8): 136-139.

• 数学 • 上一篇    下一篇

广义CH—DP方程的尖弧立波解

欧阳正勇 刘正荣   

  1. 华南理工大学 数学科学学院, 广东 广州 510640
  • 收稿日期:2007-07-05 修回日期:2007-09-30 出版日期:2008-08-25 发布日期:2008-08-25
  • 通信作者: 欧阳正勇(1978-),男,博士生,主要从事微分方程及动力系统研究. E-mail:oyzy1128@126.com
  • 作者简介:欧阳正勇(1978-),男,博士生,主要从事微分方程及动力系统研究.
  • 基金资助:

    国家自然科学基金资助项目(10571062);广东省自然科学基金资助项目(07006552)

Peaked Solitary Wave Solution to Generalized CH-DP Equation

Ouyang Zheng-yong  Liu Zheng-rong   

  1. School of Mathematical Science, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2007-07-05 Revised:2007-09-30 Online:2008-08-25 Published:2008-08-25
  • Contact: 欧阳正勇(1978-),男,博士生,主要从事微分方程及动力系统研究. E-mail:oyzy1128@126.com
  • About author:欧阳正勇(1978-),男,博士生,主要从事微分方程及动力系统研究.
  • Supported by:

    国家自然科学基金资助项目(10571062);广东省自然科学基金资助项目(07006552)

摘要: 研究了Camassa—Holm方程和Degasperis—Processi方程广义形式的尖孤立波解.运用微分方程定性理论和动力系统分支方法证明了这一类解的存在性,给出了解的显函数表达式,同时获得了光滑孤立波解的显函数表达式,推广了文献中的某些结果,解决了文献中的一个猜测.

关键词: 广义CH-DP方程, 分支方法, 分支相图, 尖孤立波解

Abstract:

This paper investigates the peaked solitary wave solutions to the generalized forms of the Camassa-Holm equation and the Degasperis-Processi equation. By means of the qualitative theory of differential equations and the bifurcation method of dynamic systems, the existence of the peaked solitary wave solutions is proved, and the ex- plicit expressions of the peaked and the smooth solitary wave solutions are respectively given. Moreover, some resuits in the literature are extended and a conjecture is clarified.

Key words: generalized CH-DP equation, bifurcation method, bifurcation phase portrait, peaked solitary wave solution