华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (8): 110-116.

• 机械工程 • 上一篇    下一篇

基于可靠性的柔顺微夹持机构几何非线性拓扑优化

李兆坤 张宪民   

  1. 华南理工大学 机械与汽车工程学院, 广东 广州 510640
  • 收稿日期:2007-09-19 修回日期:2008-01-09 出版日期:2008-08-25 发布日期:2008-08-25
  • 通信作者: 李兆坤(1978-),女,博士生,主要从事微柔顺机构拓扑优化研究. E-mail:2008lizhaokun@163.com
  • 作者简介:李兆坤(1978-),女,博士生,主要从事微柔顺机构拓扑优化研究.
  • 基金资助:

    粤港关键领域重点突破招标项目(东莞专项20061682);国家自然科学基金资助项目(50775073);广东省自然科学基金资助项目(05006494);广东省科技计划资助项目(2006A10401004)

Reliability-Based Topology Optimization of Compliant Micro-Gripper with Geometrical Nonlinearity

Li Zhao-kun  Zhang Xian-min   

  1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2007-09-19 Revised:2008-01-09 Online:2008-08-25 Published:2008-08-25
  • Contact: 李兆坤(1978-),女,博士生,主要从事微柔顺机构拓扑优化研究. E-mail:2008lizhaokun@163.com
  • About author:李兆坤(1978-),女,博士生,主要从事微柔顺机构拓扑优化研究.
  • Supported by:

    粤港关键领域重点突破招标项目(东莞专项20061682);国家自然科学基金资助项目(50775073);广东省自然科学基金资助项目(05006494);广东省科技计划资助项目(2006A10401004)

摘要: 为减少因制造过程中的不确定性因素而导致的机构性能下降现象,文中给出了一种基于可靠性的柔顺机构几何非线性拓扑优化设计方法.首先,建立增量形式的平衡方程,采用Total-Lagrange描述方法和Newton—Raphson载荷增量求解技术获得几何非线性的结构响应.其次,考虑几何尺寸及作用荷载大小的不确定性,建立柔顺机构多目标拓扑优化数学模型.目标函数以平均柔度最小和几何增益最大来满足机构的刚度和柔度需求;可靠度的概率约束采用一次可靠度方法计算;目标函数灵敏度分析采用伴随求解技术;拓扑优化采用固体各向同性材料插值方法,并用移动渐近方法进行迭代求解.最后,以柔顺微夹钳的可靠性拓扑优化为例进行研究,发现基于可靠性的拓扑优化所得机构比确定性拓扑优化所得机构更合理,说明文中所提方法是正确和有效的.

关键词: 柔顺机构, 夹持器, 几何非线性, 拓扑优化, 可靠性

Abstract:

In order to avoid the degradation of mechanism performance due to the inherent uncertainties in the production process, a reliability-based topology optimization method for the compliant mechanisms with geometrical nonlinearity is presented. In the investigation, an increment equilibrium formula is established and the structural response with geometrical nonlinearity is calculated based on the Total-Lagrange method and an incremental scheme combined with Newton-Raphson iterations. Then, by taking into consideration the randomness of the loads and the geometry description, a mathematical model is set up for the muhiobjective optimization of the compliant mechanism. In this model, the minimum average compliance and the maximum geometric advantage are taken as the objective functions to meet the requirements for the stiffness and the flexibility; the first-order reliability method is adopted to calculate the probabilistic constraint of the reliability index; the adjoint method is used to analyze the sensitivity of the objective functions; the solid isotropic material with penalization approacb is used to optimize the topology ; and the moving asymptote method is employed to solve the optimization problem. Finally, a compliant micro-gripper is used to perform a case study. The results indicate that the proposed method is correct and effective because it helps to obtain mechanisms with higher reliability than those obtained by the deterministic topology optimization.

Key words: compliant mechanism, gripper, geometrical nonlinearity, topology optimization, reliability