华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (2): 107-111.

• 动力与电气工程 • 上一篇    下一篇

容器内液化天然气分层涡旋事故的诊断与识别

王海蓉 马晓茜   

  1. 华南理工大学 电力学院, 广东 广州 510640
  • 收稿日期:2006-11-08 出版日期:2008-02-25 发布日期:2008-02-25
  • 通信作者: 王海蓉(1974-),女,博士生,主要从事液化天然气储运安全研究. E-mail:wanghairong211@sohu.com
  • 作者简介:王海蓉(1974-),女,博士生,主要从事液化天然气储运安全研究.
  • 基金资助:

    国家自然科学基金资助项目(50474034)

Diagnosis and Recognition of Stratification and Rolling for LNG in Tank

Wang Hai-rong  Ma Xiao-qian   

  1. School of Electric Power, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2006-11-08 Online:2008-02-25 Published:2008-02-25
  • Contact: 王海蓉(1974-),女,博士生,主要从事液化天然气储运安全研究. E-mail:wanghairong211@sohu.com
  • About author:王海蓉(1974-),女,博士生,主要从事液化天然气储运安全研究.
  • Supported by:

    国家自然科学基金资助项目(50474034)

摘要: 以温度为表征参量,基于谱分析方法和时频分布理论,利用温度序列的AR模型的极点参数作为前端处理的特征参数,模拟了智能系统对温度信号的处理过程,来对液化天然气(LNG)分层涡旋事故进行有效的识别与诊断.过程中,为了压缩特征维数并选择可分性最好的特征,采用了基于距离准则的特征选择方法.对温度序列的特征提取表明:从分层第一阶段过渡到第二阶段后,温度信号频率的主峰中心频率部分发生了偏移,而且频率幅度增大;涡旋临界状态的AR谱比较杂乱,既有特征谱峰又有其他谱峰;两种状态的特征参数———中心频率、谱峰幅值、高频能量和高频能量比等区别较大.最后,通过AR模型参数的欧式距离对分层涡旋的发展阶段及状态进行了模式识别.结果表明:相同状态的欧式距离趋向于零,由于信号的随机性而呈现较小的非零量;不同状态之间的欧式距离值差异明显,能够实现分层涡旋的故障状态识别.

关键词: 液化天然气, 分层, 涡旋, AR谱分析, 欧式距离, 模式识别

Abstract:

By selecting the temperature as a characterization parameter and the pole parameter of AR model of temperature sequence as the feature parameter of front-end processing, the treatment of temperature signals by an intelligent system is simulated based on the spectral analysis and the time - frequency distribution theory , and then the recognition and diagnosis of stratification and rolling are performed for the liquefied natural gas (LNG) in tank. Moreover, the character-selecting method based on distance criterion is adopted to compress the feature dimension and to select an optimal character with good separability. The results of feature extraction for temperature sequence show that ( 1 ) from the stratification state to the rolling state, the center frequency of the main peak deviates from the increasing peak value ; (2) the fuzzy AR spectrum in the critical stratification and rolling states consists of both characteristic peaks and some other peaks ; and (3) the stratification and rolling states are of different characteristic parameters such as the center frequency, the peak value, the high-frequency energy and the high-frequency energy ratio. Moreover, the results of pattern recognition for stratification and rolling based on the Euclidean distance of AR model parameter indicate that the Euclidean distances in similar states are approximate to each other but are not equal to zero due to the randomness of temperature signals, and that the obvious differences in Euclidean distances in different states help to implement the diagnosis and recognition of stratification and rolling for LNG.

Key words: liquefied natural gas, stratification, rolling, AR spectral analysis, Euclidean distance, pattern recognition