华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (10): 92-96.

• 交通运输工程 • 上一篇    下一篇

基于BP神经网络的深基坑变形预测

贺志勇 郑伟   

  1. 华南理工大学 土木与交通学院, 广东 广州 510640
  • 收稿日期:2008-05-12 修回日期:2008-06-23 出版日期:2008-10-25 发布日期:2008-10-25
  • 通信作者: 贺志勇(1964-),男,副教授,主要从事桥隧安全与健康监测系统研究. E-mail:zhyhe@scut.edu.cn.
  • 作者简介:贺志勇(1964-),男,副教授,主要从事桥隧安全与健康监测系统研究.

Deformation Prediction of Deep Foundation Pit Based on BP Neural Network

He Zhi-yong  Zheng Wei   

  1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2008-05-12 Revised:2008-06-23 Online:2008-10-25 Published:2008-10-25
  • Contact: 贺志勇(1964-),男,副教授,主要从事桥隧安全与健康监测系统研究. E-mail:zhyhe@scut.edu.cn.
  • About author:贺志勇(1964-),男,副教授,主要从事桥隧安全与健康监测系统研究.

摘要: 结合某深基坑工程,以桩体水平位移实际监测数据为样本,建立BP神经网络时间窗口预测模型,采用Matlab平台编写程序,采用Sim函数对网络进行仿真,采用Plot函数进行仿真误差分析,预测围护结构桩体的水平位移.结果表明,预测值同监测值、设计计算值吻合,表明了该预测方法的可行性.

关键词: 深基坑, 变形, BP神经网络, 预测

Abstract:

By taking the monitored horizontal displacements of the supporting structure in a deep foundation pit as samples, a prediction model of time series is established based on the back propagation (BP) neural network. Then, by using the Sim function, a simulation of the network is performed on the Matlab platform. Moreover, by employing the Plot function, an error analysis of the simulation is carried out. Thus, the horizontal displacement of the whole supporting structure is predicted. It is found that the predicted data accord well with the monitored and designed ones, thus showing that the proposed prediction method is feasible.

Key words: deep foundation pit, deformation, back propagation neural network, prediction