华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (10): 129-134.

• 机械工程 • 上一篇    下一篇

基于智能算法的涡流检测自然裂纹形状重构

张思全 陈铁群 刘桂雄   

  1. 华南理工大学 机械与汽车工程学院, 广东 广州 510640
  • 收稿日期:2007-11-20 修回日期:2008-02-20 出版日期:2008-10-25 发布日期:2008-10-25
  • 通信作者: 张思全(1971-),男,博士生,广州民航职业技术学院讲师,主要从事材料无损检测技术研究. E-mail:sqanz@126.com
  • 作者简介:张思全(1971-),男,博士生,广州民航职业技术学院讲师,主要从事材料无损检测技术研究.
  • 基金资助:

    广东省科技计划项目(2006B12401001)

Reconstruction of Natural Crack Shape from ECT Signals by Using Intelligent Algorithm

Zhang Si-quan  Chen Tie-qun  Liu Gui-xiong   

  1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2007-11-20 Revised:2008-02-20 Online:2008-10-25 Published:2008-10-25
  • Contact: 张思全(1971-),男,博士生,广州民航职业技术学院讲师,主要从事材料无损检测技术研究. E-mail:sqanz@126.com
  • About author:张思全(1971-),男,博士生,广州民航职业技术学院讲师,主要从事材料无损检测技术研究.
  • Supported by:

    广东省科技计划项目(2006B12401001)

摘要: 人工制作了疲劳裂纹试样,利用一种小波分析方法对采集的疲劳裂纹涡流检测(ECT)信号进行了去噪顸处理及信号特征提取,通过破坏性检测方法获得了裂纹的真实形状.在建立疲劳裂纹参数化模型的基础上,利用经过处理的裂纹ECT信号与裂纹形状参数样本库对径向基函数(RBF)神经网络进行训练.采用遗传算法,通过创建大量表示裂纹形状参数个体的初始种群,输入经过训练的神经网络,得到对应的ECT预测信号;然后运用改进的遗传策略进行迭代反演优化,对裂纹形状最优解进行搜索.重构结果表明该方法具有快速、精确的优点.

关键词: 自然裂纹, 涡流检测, 小波变换, 神经网络, 正向模型, 遗传算法, 形状重构

Abstract:

By using the artificially-fabricated fatigue crack samples as the research objects, the eddy cureent testing (ECT) signals of fatigue crack are collected and are then denoised by means of wavelet transform, with the signal feature being also extracted. Afterwards, a destructive testing procedure is performed to obtain the true profiles of the crack. Based on a parametric model of the fatigue crack, the radial basis function (RBF) neural network is trained with the preprocessed ECT signals and crack shape parameters. Moreover, a great deal of initial populations of crack shape parameters are generated as the inputs of the trained RBF neural network. Thus, the predicted ECT signals, namely the outputs of the network are obtained. An improved genetic strategy is finally applied to the iterative inversion optimization to search the optimal crack shape. Reconstruction results show that the proposed method is of high speed and precision.

Key words: natural crack, eddy current testing, wavelet transform, neural network, forward model, genetic algorithm, shape reconstruction