华南理工大学学报(自然科学版) ›› 2007, Vol. 35 ›› Issue (9): 113-117.

• 计算机科学与技术 • 上一篇    下一篇

一维下料问题的自适应广义粒子群优化求解

沈显君1 杨进才1 应伟勤2 郑波尽3 李元香2   

  1. 1.华中师范大学 计算机科学系,湖北 武汉 430079; 2. 武汉大学 软件工程国家重点实验室,湖北 武汉 430072;3. 中南民族大学 计算机学院,湖北 武汉430074
  • 收稿日期:2006-09-11 出版日期:2007-09-25 发布日期:2007-09-25
  • 通信作者: 沈显君(1973-),男,博士,主要从事智能计算及其应用研究. E-mail:xjshen@mail. ccnu.edu.cn
  • 作者简介:沈显君(1973-),男,博士,主要从事智能计算及其应用研究.
  • 基金资助:

    国家自然科学基金资助项目(60473014 )

Adaptive General Particle Swarm Optimization for One-Dimension Cutting Stock Problem

Shen Xian-junYang Jin-caiYing Wei-qinZheng Bo-jinLi Yuan-xiang2   

  1. 1. Dept. of Computer Science , Huazhong Normal Univ. , Wuhan 430079 , Hubei , China;2. State Key Laboratory of Software Engineering , Wuhan Univ. , Wuhan 430072 , Hubei , China;3. College of Computer Science , South-Central Univ. for Nationalities , Wuhan 430074 , Hubei , China
  • Received:2006-09-11 Online:2007-09-25 Published:2007-09-25
  • Contact: 沈显君(1973-),男,博士,主要从事智能计算及其应用研究. E-mail:xjshen@mail. ccnu.edu.cn
  • About author:沈显君(1973-),男,博士,主要从事智能计算及其应用研究.
  • Supported by:

    国家自然科学基金资助项目(60473014 )

摘要: 针对现有粒子群优化算法在求解组合优化问题时粒子速度迭代难以定义的问题,首先将粒子群优化算法与遗传算法相结合,利用交叉算子、变异算子,提出一种广义粒子群优化算法来求解一维下料问题;然后引入模拟退火算法作为自适应策略,避免算法陷入局部最优.仿真实验结果表明,采用自适应广义粒子群优化算法求解一维下料问题具有高效性和鲁棒性.

关键词: 广义粒子群优化, 一维下料问题, 遗传算法, 模拟退火算法

Abstract:

In the existing particle swarm optimization algorithms , the iteration of particle velocities is difficult to define for combinatorial optimization problems. In order to solve this problem , this paper proposes a general particle swarm optimization algorithm to solve the one-dimension cutting stock problem. In the proposed algorithm , the existing particle swarm optimization algorithm is combined with the genetic algorithm , the crossover operator and the
mutation operator in genetic algorithm are employed , and an adaptive strategy based on the simulated annealing algorithm is introduced to avoid the premature convergence of particle swarm. Simulated results demonstrate that the proposed algorithm is effective and robust in solving the one-dimension cutting stock problem.

Key words: general particle swarm optimization, one-dimension cutting stock problem, genetic algorithm, simulated annealing algorithm