华南理工大学学报(自然科学版) ›› 2005, Vol. 33 ›› Issue (11): 90-93.

• • 上一篇    下一篇

异形柱轴压比限值的简化计算方法

焦俊婷1 于霖冲2 叶英华1 刁波1   

  1. 1.北京航空航天大学 土木工程系,北京 100083;2.嘉应学院 土木工程系,广东 梅州 514015
  • 收稿日期:2005-01-17 出版日期:2005-11-25 发布日期:2005-11-25
  • 通信作者: 焦俊婷(1968-),女,副教授,博士生,主要从事钢筋混凝土结构非线性研究 E-mail:ylc@jyu.edu.cn
  • 作者简介:焦俊婷(1968-),女,副教授,博士生,主要从事钢筋混凝土结构非线性研究
  • 基金资助:

    国家自然科学基金资助项目(50448015)

Simplified Calculation M ethod of Ultimate Axial Compression Ratio for Irregularly-Shaped Columns

Jiao Jun-ting1  Yu Lin-chong2  Ye Ying-hua1  Diao Bo1   

  1. 1.Dept.of Civil Engineering,Beijing Univ.of Aeronautics and Astronautics,Beijing 100083,China;2.Dept.of Civil Engineering,Jiaying Univ.,Meizhou 514015,Guangdong,China
  • Received:2005-01-17 Online:2005-11-25 Published:2005-11-25
  • Contact: 焦俊婷(1968-),女,副教授,博士生,主要从事钢筋混凝土结构非线性研究 E-mail:ylc@jyu.edu.cn
  • About author:焦俊婷(1968-),女,副教授,博士生,主要从事钢筋混凝土结构非线性研究
  • Supported by:

    国家自然科学基金资助项目(50448015)

摘要: 已往异形柱轴压比限值的计算均采用网格法进行截面积分.由于不规则截面不易划分网格,为此,文中提出一种截面不需划分网格计算异形柱轴压比限值的简化计算方法,基于平截面假设,采用一种新的简便的截面高斯积分法,对钢筋混凝土异形截面柱轴压比限值进行数值分析,并编制了相应的计算程序.将理论分析与其他文献分析结果比较,发现吻合较好.该简化计算方法无需迭代,计算简便直接.

关键词: 异形柱, 轴压比限值, 简化计算, 截面高斯积分法

Abstract:

In the calculation of uhimate axial compression ratio for irregularly-shaped columns,the grid method is usually applied to the cross-section integration.In order to overcome the dificulty in d division,this paper proposes a simplified calculation method of the uhimate axial compression ratio without the grid division of cross-see-tion.On the basis of plane assumption,a new and simple CroSS-section Gauss integration method is adopted to numerically analyze the ultimate ax ial compression ratio for reinforced concrete iregularly-shaped columns,with cotresponding software being finally programmed.It is found that the theoretical analysis results are in good agreement with the ones presented in literature,and that the P method is simple,accurate and needless to iterate.

Key words: iregularly-shaped column, uhimate axial compression ratio, simplified calculation, across-section Gauss integration method