华南理工大学学报(自然科学版) ›› 2005, Vol. 33 ›› Issue (11): 66-71.

• • 上一篇    下一篇

带弹性支撑杆张拉结构整体找形分析的动力松弛法

韩大建 宋雄彬 王海涛   

  1. 华南理工大学 建筑学院,广东 广州 510640
  • 收稿日期:2005-01-07 出版日期:2005-11-25 发布日期:2005-11-25
  • 通信作者: 韩大建(1940-),女,教授,博士生导师,主要从事大跨度桥梁结构、空间结构的研究 E-mail:djhan@scut.edu.cn
  • 作者简介:韩大建(1940-),女,教授,博士生导师,主要从事大跨度桥梁结构、空间结构的研究

Dynamic Relaxation for Integer Form-Finding Analysis of Tension Structures with Elastic Supporting Bars

Han Da-jian  Song Xiong-bin  Wang Hai-tao   

  1. College of Architecture and Civil Engineering,South China Univ.of Tech.,Guangzhou 510640,Guangdong,China
  • Received:2005-01-07 Online:2005-11-25 Published:2005-11-25
  • Contact: 韩大建(1940-),女,教授,博士生导师,主要从事大跨度桥梁结构、空间结构的研究 E-mail:djhan@scut.edu.cn
  • About author:韩大建(1940-),女,教授,博士生导师,主要从事大跨度桥梁结构、空间结构的研究

摘要: 张拉结构与传统的钢、砼等刚性结构不同,是一种柔性的张力体系,其设计计算过程一般分为初始形状的确定(找形)一荷载分析一裁剪分析.传统的带弹性支撑杆的张拉结构如索网、索膜结构,在找形中往往忽略索网、索膜与弹性支撑杆的相互作用,本文在Michael R.Barnes找形理论的基础上推导了张拉结构找形分析的动力松弛法的基本公式,同时充分考虑两者的相互作用,应用动力松弛法对这种结构进行整体找形分析,并通过算例验证了所提出方法的可靠性与适用性.

关键词: 张拉结构, 整体找形, 动力松弛法, 弹性支撑, 运动阻尼

Abstract:

Tension structures,different from traditional rigid structures such as steel and concrete,are flexible tensionsystems,whose design and calculation process usually includes form-finding analysis,loading analysis and cuttingpattern generation analysis.In the form-finding process of traditional tension structures supported by elasticbars.such as the cable.web structure and the cable.membrane structure,the interaction between the structure andthe elastic supports is usually neglected.In the present study,basic form -finding form ulae of dynamic relaxation method f0r the form .finding analysis of tension structures are deduced based on the form -finding theory proposed by Michael R.Barnes.Furtherm ore.considering the interaction of elastic supports and tension structures,a formfinding method for tension structures with elastic supports is developed.An example is finally presented to verify the reliability and applicab ility of the proposed method.

Key words: tension structure, integer form-finding, dynamic relaxation, elastic support, kinetic damping