华南理工大学学报(自然科学版) ›› 2004, Vol. 32 ›› Issue (7): 86-88.

• • 上一篇    下一篇

含权的Sobolev- Hardy不等式的最佳常数

姚仰新 沈尧天 曲军恒   

  1. 华南理工大学 应用数学系‚广东 广州510640
  • 收稿日期:2003-04-14 出版日期:2004-07-20 发布日期:2015-09-09
  • 通信作者: 姚仰新(1957-)‚男‚教授‚主要从事偏微分方程研究. E-mail:mayxyao@scut.edu.cn
  • 作者简介:姚仰新(1957-)‚男‚教授‚主要从事偏微分方程研究.
  • 基金资助:
    国家自然科学基金资助项目(10171032);广东省自然科学基金资助项目(011606)

Best Constant in Weighed Sobolev-Hardy Inequality

Yao Yang-xin  Shen Yao-tian  Qu Jun-heng   

  1. Dept.of Applied Mathematics‚South China Univ.of Tech.‚Guangzhou510640‚Guangdong‚China
  • Received:2003-04-14 Online:2004-07-20 Published:2015-09-09
  • Contact: Yao Yang-xin (born in1957)‚male‚professor‚mainly researches on partial differential equations. E-mail:mayxyao@scut.edu.cn
  • About author:Yao Yang-xin (born in1957)‚male‚professor‚mainly researches on partial differential equations.
  • Supported by:
     Supported by the Natural Science Founda-tion of China (10171032) and Guangdong Provincial Natural Science Foundation (011606)

摘要: 在讨论含正常数 C 的 Sobolev-Hardy 不等式时‚主要困难是处理β=0的情况的方法不适用于β≠0
的情况.当β=0时‚可利用 Schwarz 对称化的方法;然而‚当β≠0时‚无法断言在 Schwarz 对称化的情况下‚
含权的 L p 的模是递减的‚含权的 L p∗ 的模是递增的.因此‚必须寻求另外的方法.文中采用 Bliss 引理‚证明
存在一个最佳常数 C 使 Sobolev-Hardy 不等式成立.

关键词: p-Laplace 方程, 临界指数, 最佳常数, Sobolev-Hardy 不等式

Abstract:

To the weighed Sobolev-Hardy inequality containing a positive constant C‚the main obstacle is that the method used to the case β=0does not works anywhere when β≠0.That is to say‚when β=0‚the method of Schwarz symmetrization can be employed‚but there is no reason to believe that the Schwarz symmetrization still diminishes the weighed L p -gradient or increases the weighed L p∗-norm of a function.So another approach must be found to the Sobolev-Hardy inequality.In this paper‚by Bliss lemma‚it is proved that there exists a best constant C such that the weighed Sobolev-Hardy inequality is right.

Key words: p-Laplace equation, critical exponent, best constant, Sobolev-Hardy inequality