华南理工大学学报(自然科学版) ›› 2011, Vol. 39 ›› Issue (2): 118-124.doi: 10.3969/j.issn.1000-565X.2011.02.020

• 计算机科学与技术 • 上一篇    下一篇

基于局部类别一致k均值聚类的目标识别方法

梁鹏 黎绍发 覃姜维   

  1. 华南理工大学 计算机科学与工程学院,广东 广州 510006
  • 收稿日期:2010-04-28 出版日期:2011-02-25 发布日期:2011-01-02
  • 通信作者: 梁鹏(1981-),男,博士生,主要从事计算机视觉、机器学习和模式识别研究 E-mail:cs_phoenix_liang@163.com
  • 作者简介:梁鹏(1981-),男,博士生,主要从事计算机视觉、机器学习和模式识别研究
  • 基金资助:

    国家自然科学基金资助项目(60273064);广东省工业攻关计划项目(2004B10101032)

Object Recognition Approach Based on Local Type-Consistent k-Means Clustering

Liang Peng  Li Shao-fa Qin  Jiang-wei   

  1. School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2010-04-28 Online:2011-02-25 Published:2011-01-02
  • Contact: 梁鹏(1981-),男,博士生,主要从事计算机视觉、机器学习和模式识别研究 E-mail:cs_phoenix_liang@163.com
  • About author:梁鹏(1981-),男,博士生,主要从事计算机视觉、机器学习和模式识别研究
  • Supported by:

    国家自然科学基金资助项目(60273064);广东省工业攻关计划项目(2004B10101032)

摘要: 针对复杂背景下的目标识别,提出了一种同时检测目标位置和区分目标类别的识别方法.该方法首先从图像中提取丰富的兴趣点,通过图像之间的对极几何约束,过滤出精确匹配的图像兴趣点;然后在兴趣点特征空间用局部类别一致k均值聚类方法生成特征码本;最后,对于给定的测试兴趣点集,通过投票得到表示目标类别的局部特征,采用最大化目标类别和目标位置的联合概率得到前景目标.在Caltech-101数据库和实际场景图像上的实验表明,该方法的识别精度大约提高了8%.

关键词: 目标识别, 局部类别一致k均值聚类, 对极几何约束, 兴趣点

Abstract:

Aiming at the object recognition in complex background,a recognition method,which simultaneously detects object location and classifies object types,is proposed.In this method,first,a large number of interest points are selected from the image and are filtered to obtain exactly-fitted outliers via the epipolar geometric constraint between images.Then,feature codebooks in the interest point space are formed via the local type consistent k-means clustering.Finally,for the given test interest points,the local features are voted to represent the object type,and the foreground object is obtained by maximizing the joint probability of object type and location.Experimental results on standard dataset Caltech-101 and real scene images demonstrate that the proposed method improves the recognition accuracy by about 8%.

Key words: Object Recognition, Local Type Consistent Kmeans Clustering, Epipolar Geometric Constraint, Interest Point