华南理工大学学报(自然科学版) ›› 2010, Vol. 38 ›› Issue (2): 142-148.doi: 10.3969/j.issn.1000-565X.2010.02.027

• 电子、通信与自动控制 • 上一篇    

基于小波多分辨分析的新型多RBF网络轧制力设定模型

陈治明罗飞曹建忠2   

  1. 1.华南理工大学 自动化科学与工程学院, 广东 广州 510640; 2.惠州学院 电子科学系, 广东 惠州 516007
  • 收稿日期:2009-03-02 修回日期:2009-03-30 出版日期:2010-02-25 发布日期:2010-02-25
  • 通信作者: 陈治明(1981-),男,博士生,主要从事智能控制技术研究. E-mail:z_m_chen@163.com
  • 作者简介:陈治明(1981-),男,博士生,主要从事智能控制技术研究.
  • 基金资助:

    国家自然科学基金资助项目(60774032);广州市科技攻关重点项目(200722-D0121)

A Multiple-RBF Neural Network Model to Set Rolling Force Based on Wavelet Analysis

Chen Zhi-mingLuo FeiCao Jian-zhong 2   

  1. 1 School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China; 2. Department of Electronic Science, Huizhou University, Huizhou 516007, Guangdong, China
  • Received:2009-03-02 Revised:2009-03-30 Online:2010-02-25 Published:2010-02-25
  • Contact: 陈治明(1981-),男,博士生,主要从事智能控制技术研究. E-mail:z_m_chen@163.com
  • About author:陈治明(1981-),男,博士生,主要从事智能控制技术研究.
  • Supported by:

    国家自然科学基金资助项目(60774032);广州市科技攻关重点项目(200722-D0121) 

     

    :国家自然科学基金资助项目(60774032);广州市科技攻关重点项目(200722-D0121)

摘要: 带钢热连轧生产过程中,影响因素多、关联复杂,轧制过程控制的精确模型难以建立,其中轧制力的预设定是重要问题之一,各种影响因素都会在轧制力的波动中有所体现.本文应用小波多分辨分析方法,将轧制力分解重构为对应于不同影响因素的不同频率成分子信号,并建立了一个多RBF网络模型,模型中每个子网络分别对一个信号成分进行建模,最后子网络输出被综合为轧制力设定信号.因为各个子信号影响因素不同,所以每个子模型输入参数不同,输出参数也不同,能真实地反映轧制力变化内在机理,具有明确的物理意义.仿真实验表明,这种建模方法降低了系统维数,能有效提高网络学习能力,轧制力预设定误差率从BP网络的10%降低到了5%.

关键词: 热连轧, 轧制力, 小波分析, 多RBF神经网络

Abstract:

During the setting of rolling factors with complicated correlation. It force in continuous hot strip rolling, force signals are influenced by is, therefore, difficult to establish an accurate model to describe the various rolling mechanism. In order to solve this problem, a multi-RBF neural network model is proposed. In this new model, the multi-resolution wavelet analysis method is employed to separate the rolling force signal into several sub-signals corresponding to different factors, and several RBF neural networks are established, each for a certain sub-signal. All the outputs of the sub-networks are integrated into a rolling force signal, and both the input and the output of each network relate to the affecting factors of the corresponding sub-signal. Thus, the sub-networks can well reflect the variation mechanism of the rolling force. Simulated results show that the proposed model decreases the number of system dimensions, improves the learning ability of the network, and reduces the error rate of rolling force setting from the original 10% in BP neural network model to 5%.

Key words: continuous hot rolling, rolling force, wavelet analysis, multi-RBF neural network