华南理工大学学报(自然科学版) ›› 2010, Vol. 38 ›› Issue (2): 121-125.doi: 10.3969/j.issn.1000-565X.2010.02.023

• 电子、通信与自动控制 • 上一篇    下一篇

基于PS-level set嘴唇几何形状定位模型

奉小慧 贺前华  王伟凝 严乐贫   

  1. 华南理工大学 电子与信息学院, 广东 广州 510640
  • 收稿日期:2009-02-12 修回日期:2009-03-18 出版日期:2010-02-25 发布日期:2010-02-25
  • 通信作者: 贺前华(1965-),男,教授,博士生导师,主要从事语音识别及合成技术、音视频信号处理、模式识别等研究E—mail:eehe@seut.edu.cn E-mail:xh.feng@mail.scut.edu.cn
  • 作者简介:奉小慧(1981-),女,博士生,主要从事音视频语音处理、口语语音识别、模式识别等研究.
  • 基金资助:

    国家自然科学基金资助项目(60572141,60602014)

Detection Model of Geometric Shape of Lip Based on PS-Level Set

Feng Xiao-hui   He Qian-hua   Wang Wei-ning   Yan Le-pin   

  1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2009-02-12 Revised:2009-03-18 Online:2010-02-25 Published:2010-02-25
  • Contact: 贺前华(1965-),男,教授,博士生导师,主要从事语音识别及合成技术、音视频信号处理、模式识别等研究E—mail:eehe@seut.edu.cn E-mail:xh.feng@mail.scut.edu.cn
  • About author:奉小慧(1981-),女,博士生,主要从事音视频语音处理、口语语音识别、模式识别等研究.
  • Supported by:

    国家自然科学基金资助项目(60572141,60602014)

摘要: 针对面向唇读的level set模型在嘴唇分割中存在边界过收敛和过早收敛的问题,本文提出一种改进的基于先验知识的水平集模型(Prior Shape -level set,简称PS-level set)来进行嘴唇几何形状的定位。PS-level set模型利用改进的差值能量函数引入嘴唇形状的先验信息。在曲线演化过程中,反复比较曲线和先验曲线的差距,使曲线的演化形状逐渐逼近先验模型形状,更精确地收敛于目标物体实际轮廓。实验证明用PS-level set模型定位嘴唇几何形状的准确率比level set模型提高了8.38%。

关键词: 唇读, 嘴唇几何形状定位, 水平集模型, 曲线演化

Abstract:

In order to overcome the overconvergence and the premature convergence of lip boundary caused by the level set model for geometric shape detection, an improved level set model based on the prior shape ( PS-Level Set) is proposed. In this model, the prior shape information of lip is incorporated into an improved differential energy function, and the differences between the evolution shape curve and the prior shape curve are repeatedly compared during the curve-evolving process, which enables the evolution shape to gradually approach the prior one and to converge to the target object more accurately. Experimental results show that, as compared with the conventional level set model, the proposed model improves the detection accuracy by 8.38%.

Key words: lip reading, shape detection, level set model, curve evolution