华南理工大学学报(自然科学版)

• 电子、通信与自动控制 • 上一篇    下一篇

面向污水处理的轻量多参数时序预测方法

唐莉丽  刘乙奇   

  1. 华南理工大学 自动化科学与工程学院,广东 广州 510640

  • 出版日期:2025-06-13 发布日期:2025-06-13

A Lightweight Multi-Parameter Time Series Prediction Method for Wastewater Treatment

TANG Lili  LIU Yiqi   

  1. School of Automation Science & Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China

  • Online:2025-06-13 Published:2025-06-13

摘要:

在污水处理过程中,高效建模关键水质参数对于实现过程控制优化、异常检测和决策支持具有重要意义。然而,其过程数据普遍具有时序依赖性、多变量耦合性和工况非稳态性等特点,给精准建模带来了重大挑战。为解决这些问题,该文提出了一种基于平稳小波变换(SWT)和协同注意力机制(CA)的轻量多参数时序预测模型。该方法首先在对污水数据进行多尺度分解的基础上,利用平稳小波变换提取数据在不同尺度序列下的特征;然后,依托几何注意力与稀疏注意力构建协同注意力机制,以高效捕捉关键水质参数之间的复杂耦合关系及时序特征;最后,通过双投影层将逆小波变换重构后的特征映射为最终预测结果。在东莞某污水处理厂的实测数据集上进行模型训练与验证,并开展多步预测任务和部分数据可视化。实验结果表明,所提模型在24步多输出预测任务中,RMSSD较对比模型降低9.15%~37.70%;在其他预测任务中精度仅次于参数规模更大的TimesNet,体现了模型在轻量化与高精度间的有效平衡,验证了其在污水处理时序预测中的有效性。

关键词: 多变量时间序列预测, 平稳小波变换, 协同注意力机制, 轻量化, 污水处理

Abstract:

In wastewater treatment processes, efficient modeling of key water quality-related parameters is crucial for achieving process control optimization, anomaly detection, and decision support. However, process data typically exhibit complex temporal dependencies, multivariable coupling nexus, and non-stationary characteristics, which pose significant challenges for modeling. To address these issues, this paper proposes a Lightweight Multi-Parameter Time Series Prediction Method for Wastewater Treatment based on the Smooth Wavelet Transform (SWT) and Collaborative Attention (CA). This method first performs multi-scale decomposition on wastewater data and uses the stationary wavelet transform to extract features from the data at different scales. Then, it constructs a collaborative attention mechanism based on geometric attention and sparse attention to efficiently capture the complex coupling relationships and temporal features among key water quality parameters. Finally, a dual projection layer maps the reconstructed features obtained from the inverse wavelet transform to the final prediction outputs. The model is trained and evaluated using real-world data collected from a wastewater treatment plant in Dongguan. Experimental results show that, in 12-step forecasting tasks, the proposed model achieves a reduction of 9.15% to 37.70% in RMSSD compared to baseline models. In other tasks, its accuracy is second only to TimesNet, which has a significantly larger parameter size. These findings demonstrate the model’s strong balance between lightweight design and predictive performance, validating its effectiveness for time series forecasting in wastewater treatment.

Key words: multivariate time series prediction, stationary wavelet transform, collaborative attention mechanism, lightweight, wastewater treatment