华南理工大学学报(自然科学版)

• 机械工程 • 上一篇    下一篇

喷射成形多喷嘴扫描沉积界面行为模型与智能调控方法

冷晟1 黄海泽1 蒋增华2 鹿华锐1 马万太1   

  1. 1.南京航空航天大学 机电学院,江苏 南京 210016;

    2. 中国航发湖南动力机械研究所 系统研发中心,湖南 株洲 412002

  • 出版日期:2025-06-13 发布日期:2025-06-13

DSBM of Multi-Nozzle Scanning for Spray Forming and Its Intelligent Optimization Approach

LENG Sheng1  HUANG Haize1  JIANG Zenghua2  LU Huarui1  MA Wantai   

  1. 1. College of Mechanical & Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016, Jiangsu,China;

    2. AECC Hunan Aviation Powerplant Research Institute, System Research Center,Zhuzhou 412002, Hunan,China

  • Online:2025-06-13 Published:2025-06-13

摘要:

轻质高性能铝合金材料对航空航天装备轻量化具有重要意义,由此喷射成形快速凝固技术在高强铝合金的制备上受到了越来越多的关注。为满足航空航天大尺寸构件的研制需求,需要采用多喷嘴协同工作方式以获得更大的锭坯直径。在多个喷嘴形成的雾化锥以一定倾角在沉积界面扫描沉积过程中,确保熔体物质分布均匀,锭坯顶部沉积界面平整且稳定生长是获得高质量、沉积坯组织致密均匀的关键。沉积过程中多喷嘴的相关工艺参数直接影响了雾化熔滴在界面的扫描轨迹与物质沉积状态,对锭坯生长起到决定性作用。本文以形成形貌一致、沉积质量均匀的大规格锭坯为目标,基于微尺度扫描沉积高度,建立多喷嘴沉积界面生长过程行为模型(DSBM模型),利用沉积界面GA-DSBM智能调控方法对沉积过程中的相关工艺参数进行仿真计算与优化。通过喷射成形试验对寻优得到的工艺参数进行了验证,试验直径600mm锭坯的表面不平整高度差为7.52mm,符合工艺设计要求,验证了智能调控与优化方法的可行性。

关键词: 喷射成形, 多喷嘴, 沉积界面, 沉积均匀

Abstract:

Lightweight and high-performance aluminum alloys are crucial for the weight reduction design of aerospace equipment. Consequently, spray forming with rapid solidification technology has garnered increasing attention for the fabrication of high-strength aluminum alloys. To meet the demands of large-scale aerospace components, a multi-nozzle collaborative system is required to achieve larger billet diameters. During the scanning deposition process, where atomization cones from multiple nozzles intersect the deposition interface at specific inclination angles, it is essential to ensure uniform distribution of the molten material and maintain a flat, stable growth of the billet’s top surface. These factors are key to producing high-quality billets with dense and uniform microstructures. The process parameters associated with multi-nozzle configurations directly influence the scanning trajectories of atomized droplets and the material deposition state at the interface, playing a decisive role in billet growth. Aiming to produce large-scale billets with consistent morphology and uniform deposition quality, a multi-nozzle Deposition Surface Behavior Model (DSBM) is established based on microscale scanning deposition heights. Additionally, the GA-DSBM intelligent optimization method is employed to simulate, analyze, and optimize key process parameters during deposition. BY the optimized parameters, spray forming experiments were conducted, which shows that the surface unevenness was lower than 7.52 mm when spray forming a billet with a diameter of 600 mm. It meets the design requirements and confirming the feasibility of the intelligent optimization method.

Key words:

spray forming;multi-nozzle;deposition surface;uniform deposition ,