华南理工大学学报(自然科学版)

• 机械工程 • 上一篇    下一篇

斜轴式柱塞马达流固噪声源特征及高精度定位分析

陈福龙1  黄惠1  杜恒1  苏俊收2,3  李雨铮1   

  1. 1. 福州大学 机械工程及自动化学院/流体动力与电液智能控制福建省高校重点实验室,福建 福州 350108;

    2. 江苏徐工国重实验室科技有限公司,江苏 徐州 211004;

    3. 北京科技大学 机械工程学院,北京 100083

  • 发布日期:2025-07-01

Characteristics and High-Precision Positioning Analysis of Fluid-Solid Noise Sources in Bent Axis Piston Motor

CHEN Fulong1   HUANG Hui1   DU Heng1   SU Junshou2,3   LI Yuzheng1   LI Fuqi1   

  1. 1. School of Mechanical Engineering and Automation/ Key Laboratory of Fluid Power and Intelligent Electro-Hydraulic Control of Fujian Province University, Fuzhou University, Fuzhou 350108, Fujian, China;

    2. Jiangsu XCMG State Key Laboratory Technology Co., Ltd., Xuzhou 221004, Jiangsu, China;

    3. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

  • Published:2025-07-01

摘要:

马达作为液压系统的主要执行装置,其巨大的噪声辐射已难以满足低音化的要求,而由于当前对马达噪声主要来源不明确和定位精度较低,致使马达降噪效果始终不理想。因此,为明确马达噪声的主要来源,进一步提升马达噪声的定位精度,首先,通过Pumplinx软件建立马达的流体仿真模型,得到马达配流盘处流体振动力变化信息,通过ADAMS和AMESim软件联合仿真,得到马达运动时柱塞撞击缸体所引起的振动力变化信息,结合有限元瞬态动力学分析方法,采用ANSYS中瞬态分析方法得到马达壳体和后端盖表面的振动位移响应,以ANSYS中得到的马达壳体和后端盖表面的振动信息作为声学边界条件,结合边界元分析方法,在LMS Virtual. Lab中仿真得到马达的声场,明确马达噪声的主要来源及噪声的主要发生区域;其次,设计马达声强噪声测试试验台,获得马达声强变化云图,验证多物理联合仿真结果的准确性;然后综合考虑观测矩阵、稀疏表达以及重构算法的关系,采用正则化正交匹配追踪重构算法(Regularized Orthogonal Matching Pursuit, ROMP),进一步精确马达主要噪声的定位区域;最终再次通过声强测试试验台验证优化后重构发算法提升定位精度的可行性。结果表明,马达模型多物理场仿真的结果是正确的,噪声主要来源于配流盘处的压力冲击和柱塞的碰撞,主要噪声区域分布于配流盘处,新的主要定位精度达到25mm,实现了对马达主要噪声来源的确定和定位精度的提升。

关键词: 斜轴式柱塞马达, 流固噪声源, 激振力分析, 声强图像, 正则化正交匹配追踪重构算法

Abstract:

As the primary actuator in hydraulic systems, motors generate significant noise radiation that increasingly fails to meet low-noise requirements. Furthermore, the lack of clarity regarding the primary noise sources and the low localization accuracy in current methodologies have resulted in persistently unsatisfactory noise reduction effectiveness. To clarify the main sources of motor noise and improve the localization accuracy, a multi-physics approach was implemented. First, a fluid dynamics model of the motor was established using Pumplinx to analyze fluid-induced vibration forces at the valve plate. Co-simulation of ADAMS and AMESim was conducted to capture vibration forces generated by piston-cylinder collisions during motor operation. Transient dynamic analysis in ANSYS was then employed to obtain vibration displacement responses on the motor housing and rear cover surfaces. These vibration results were applied as acoustic boundary conditions in LMS Virtual.Lab, combined with the Boundary Element Method (BEM), to simulate the motor’s acoustic field, identifying the primary noise sources and dominant regions. A dedicated acoustic intensity test bench was designed to acquire noise distribution maps, validating the multi-physics co-simulation results. The Regularized Orthogonal Matching Pursuit (ROMP) algorithm, integrating observation matrices, sparse representation, and reconstruction techniques, was further utilized to refine noise localization accuracy. Final experimental verification confirmed the feasibility of the optimized algorithm. Results demonstrated the accuracy of the multi-physics model, revealing that the main noise originates from pressure impacts at the valve plate and piston collisions, with the valve plate region identified as the primary noise source. The refined localization precision reached 25 mm, achieving enhanced determination and spatial resolution of motor noise sources.

Key words: bent axis piston motor, fluid-solid noise source, exciting force analysis, sound intensity image, regularized orthogonal matching pursuit