华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (11): 1-.doi: 10.12141/j.issn.1000-565X.250032

• 计算机科学与技术 •    

一种基于材料结构条件先验的高噪声STEM原子结构分割方法

郭礼华1 林延域1,3 陈轲2   

  1. 1.华南理工大学 电子与信息学院,广东 广州 510640;

    2. 鹏城实验室,广东 深圳 518055;

    3. 中国电信股份有限公司广东分公司,广东 广州 510440


  • 出版日期:2025-11-25 发布日期:2025-05-06

A High Noise STEM Atomic Structure Segmentation Method Based on Materials Structural Priors

GUO Lihua1 LIN Yanyu1,3  CHEN Ke2   

  1. 1. School of Electronics and Information Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China;

    2. Pengcheng Laboratory, Shenzhen 518055, Guangdong, China;

    3. China Telecom Co., Ltd.,Guangdong Branch, Guangzhou 510440, Guangdong, China

  • Online:2025-11-25 Published:2025-05-06

摘要:

扫描透射电子显微镜(STEM)能够在纳米和原子尺度上实现对材料微结构的表征与分析,但是其成像过程中会受到难以预计的非均匀噪声的干扰,从而影响原子结构分析。过去几年基于深度学习网络的预测模型可以通过去噪或数据拟合来减少噪声的影响,但是存在过拟合的问题。本文引入材料的结构条件先验,并将其材料结构条件先验建模到深度神经网络模型中,设计一种基于材料结构条件先验的高噪声STEM原子结构分割方法。方法通过对比学习方式将材料结构条件先验建模成分割网络的注意力,其中包括自注意力机制和交叉注意力机制两种。通过计算这两种注意力,不仅能够使得分割网络自适应地关注图像中的关键区域,还能自适应地关注到来自结构坐标向量模态的控制信息。实验结果表明本文因为引入材料的结构条件先验,所以分割网络模型比其他传统分割网络更准确地分割高噪声STEM图像中的原子结构,并预测被噪声或顶层遮挡的次级结构信息。


关键词: 原子结构分割, 高噪声STEM, 结构先验建模

Abstract:

Scanning transmission electron microscopy (STEM) can realize the characterization and analysis of the microstructure at nano and atomic scales. However, the imaging process will be affected by unpredictable non-uniform noise, which will affect the atomic structure analysis. In the past few years, predictive models based on deep learning networks can reduce the impact of noise through de-noising or data fitting, but these models still meet an overfitting problem. In this paper, a high-noise STEM atomic structure segmentation method based on structural condition priors of materials is designed by introducing structural condition priors of materials into deep neural network models. The structure condition prior of materials is modeled into segmented network attention using the contrast learning method, which includes the self-attention mechanism and cross-attention mechanism. By calculating these two kinds of attention, the segmentation network can not only focus on the key regions in the image but also focus on the control information from the structure coordinate vector mode. The experimental results show that the proposed segmentation network can segment the atomic structure of high-noise STEM images more accurately than other traditional segmentation networks, and accurately predict the secondary structure information that is blocked by noise or the top layer.

Key words: atomic structure segmentation, high noise STEM, prior information model