华南理工大学学报(自然科学版)

• 土木建筑工程 • 上一篇    下一篇

多层框架-稀疏人字撑结构的抗侧力性能研究

何亮1  许照宇2  沈文杰1  童根树3  刘志鑫1  张磊3   

  1. 1.安徽省建筑设计研究总院股份有限公司,安徽 合肥 230000;

    2.浙江水利水电学院,浙江 杭州 310018;

    3.浙江大学高性能结构研究所,浙江 杭州310058

  • 发布日期:2025-07-01

Research on Lateral Resistance of Multi-Storey Steel Frame With Sparse Chevron Bracings

HE Liang1  XU Zhaoyu2  SHEN Wenjie1  TONG Genshu2  LIU Zhixin1  ZHANG Lei3   

  1. 1.Anhui Architectural Design and Research Institute Co., Ltd, Heifei 230000, Anhui Province, China;

    2. Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, Zhejiang Province, China;

    3.Institute of Advanced Engineering Structures, Zhejiang University, Hangzhou 310058, Zhejiang Province, China

  • Published:2025-07-01

摘要:

本文针对多层钢框架-稀疏人字撑结构的抗侧力性能展开深入研究,结合有限元分析和理论推导,系统探讨了横梁未充分加强情况下结构的力学行为及其对抗侧性能的影响。通过弹塑性推覆分析,验证了多重抗侧力体系串并联理论模型的准确性,并揭示了支撑内力随层间位移角的变化规律。有限元分析结果表明,横梁的刚度和强度对压撑屈曲后拉撑轴力的发展具有显著影响,框架作为第二道抗侧力体系能够有效补偿支撑屈曲后的承载力退化。此外,楼板有效宽度与钢梁的组合效应可显著提高横梁的抗弯刚度,从而有利于拉撑轴力的发展,减小压撑屈曲后承载力的退化。对于横梁未充分加强的刚接框架-人字撑结构,在侧向位移和不平衡力的共同作用下,横梁的塑性铰首先出现在压撑一侧的梁端,随后出现在横梁跨中。基于这一破坏模式,推导了受拉支撑轴力和横梁不平衡力的计算公式,并具有较高的精度。研究表明,即使横梁未满足《建筑抗震设计规范》第8.2.6-2条充分加强的要求,当框架抗侧能力占比较高时,整体结构的承载力仍不会随侧移增加而退化,能够保证7度(0.1g)设防烈度地震作用下的安全。本文提出的横梁不平衡力计算方法为优化框架-人字撑结构设计提供了新的思路,避免了传统设计中因横梁高度过大而导致的设计问题,为实际工程结构设计提供了重要的理论支持和实践指导。

关键词: 人字撑, 双重抗侧力结构, 横梁刚度, 楼板有效宽度, 支撑内力

Abstract:

This study investigates the lateral resistance of multi-storey steel frames with sparse Chevron bracing. The mechanical behaviour of structures with insufficiently strengthened horizontal beams was numerically and theoretically investigated. The series-parallel theoretical model for dual lateral force-resisting systems was first validated through nonlinear pushover analysis. The variation patterns of bracing internal forces with inter-story drift angles were presented. After the buckling of compressed braces, the stiffness and strength of horizontal beams were shown to have a significant effect on the development of axial forces in tensile braces. As a secondary lateral force-resisting system, the steel frame helps compensate for the loss of load-bearing capacity after buckling of compressed bracing. The composite effect of concrete slabs and steel beams enhances the flexural stiffness of horizontal beams, thereby facilitating the development of axial forces in the tensile braces and reducing the degradation of load-bearing capacity. In rigidly connected frames with Chevron bracing and insufficiently strengthened horizontal beams, plastic hinges first form at the beam end near the compressed brace side, then at the mid-span of the horizontal beam. Based on this failure mechanism, accurate formulas for calculating axial tensile forces in braces and unbalanced forces in horizontal beams are derived. The study shows that even if horizontal beams do not meet strengthening requirements in the Code for Seismic Design of Buildings, the overall structural capacity remains intact if the frame’s lateral resistance is sufficiently strong. This ensures compliance with seismic performance requirements in regions with a seismic intensity of 7 degrees (0.1g). The proposed calculation method for unbalanced forces offers a new approach to optimizing Chevron-braced frame designs, addressing the issue of excessive beam height in traditional designs, and providing valuable theoretical and practical insights for structural engineering.

Key words: chevron bracing, dual lateral force–resisting systems, flexural stiffness of the beam, effective breadth of the slab, axial force in bracing