华南理工大学学报(自然科学版)

• 交通运输工程 • 上一篇    下一篇

电动汽车与行人/非机动车碰撞事故多发点段鉴别

杨妙言1  董春娇1  熊志华1  庄焱2  许博1   

  1. 1.北京交通大学 交通运输学院,北京 100044;

    2. 中国电子信息产业发展研究院,北京 100846

  • 发布日期:2025-06-18

Accident-Prone Locations Identification Method of Electric Vehicle and Pedestrian/Non-Motor Vehicle Collision

YANG Miaoyan1  DONG Chunjiao1  XIONG Zhihua1  ZHUANG Yan2  Xu Bo1   

  1. 1. School of Traffic and Transportation of Beijing Jiaotong University,Beijing 100044,China;

    2. China Center for Information Industry Development,Beijing 100846,China

  • Published:2025-06-18

摘要: 为了精细探究电动汽车与道路弱势群体碰撞事故的时空分布特征,本文提出一种电动汽车与行人/非机动车碰撞事故的时空多发点段鉴别方法。首先,基于电动汽车与行人/非机动车碰撞事故数据,采用层次分析法确定事故影响因素权重,通过赋权网络核密度估计法揭示交通事故发生地点的空间聚集性。在此基础上,采用密度峰值聚类(clustering by fast search and find of density peaks,DPC)算法作为事故空间聚类模型,并引入带有时间维度特征的时空DBSCAN(Spatial Temporal-DBSCAN,ST-DBSCAN)算法,构建事故时空多发点段鉴别模型,精准刻画电动汽车与行人/非机动车碰撞事故时空多发位置。最后,以某市连续11个月电动汽车事故为例进行实证研究。研究结果表明:电动汽车与行人/非机动车碰撞事故时间上具有三个高峰,异于传统交通事故双峰趋势,空间上事故呈现局部集中特征;在空间多发点段鉴别中,相比于DBSCAN、OPTICS和Mean Shift算法,DPC鉴别模型的轮廓系数、DBI(Davies-Bouldin Index)和CHI(Calinski-Harabasz Index)分别具有42.9%、74.5%和11.1%的优势;在时空多发点段鉴别中,在DBI相近条件下,ST-DBSCAN鉴别模型的轮廓系数和CHI分别优于ST-OPTICS、ST-DPC和ST-Mean Shift算法最优值2.25倍和57.3%。

关键词: 电动汽车, 行人/非机动车事故, 时空分布特征, 事故多发点段鉴别, 聚类算法

Abstract:

To explore the spatiotemporal characteristics of collision accidents between electric vehicles and vulnerable road users under mixed traffic conditions, this study proposes a method for identifying spatiotemporal hot spots of collisions between electric vehicles and pedestrians/non-motorized vehi-cles. First, based on collision data involving electric vehicles and pedestrians/non-motorized vehicles, the Analytic Hierarchy Process is employed to determine the weights of the influencing fac-tors. Subsequently, a weighted kernel density estimation method reveals the spatial clustering of traf-fic accident locations. Building on this foundation, the Density Peaks Clustering algorithm is utilized as a spatial clustering model for accidents, and a Spatial Temporal-DBSCAN model is constructed to incorporate the temporal dimension, thereby accurately characterizing the spatiotemporal distribution characteristics of collision accidents between electric vehicles and pedes-trians/non-motorized vehicles. Finally, an empirical analysis is conducted using data from a city over a continuous period of 11 months regarding electric vehicle accidents. The research findings indicate that collisions between electric vehicles and pedestrians/non-motorized vehicles exhibit three tem-poral peaks, differing from the traditional bimodal trend observed in traffic accidents, while spatially, accidents display localized clustering characteristics. In terms of spatial hot spot identification, the DPC model outperforms the DBSCAN, OPTICS, and MeanShift algorithms, showing improvements of 42.9%, 74.5%, and 11.1% in silhouette coefficient, Davies-Bouldin Index (DBI), and Calinski-Harabasz Index (CHI), respectively. For spatiotemporal hot spot identification, under comparable DBI conditions, the ST-DBSCAN model achieves silhouette coefficient and CHI values that are 2.25 times and 57.3% higher, respectively, than the best values obtained from ST-OPTICS, ST-DPC, and ST-MeanShift algorithms.

Key words: electric vehicles, pedestrian/non-motorized vehicle accidents, spatio-temporal distribution character-istics, accident-prone locations identification, clustering algorithm