华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (5): 1-10.doi: 10.12141/j.issn.1000-565X.240467

• 机械工程 • 上一篇    

型腔恒负载加工组合轨迹设计与速度优化

王清辉1 王金强1 丁雪松1 廖昭洋2   

  1. 1. 华南理工大学 机械与汽车工程学院, 广东 广州 510640

    2. 广东省科学院 智能制造研究所/广东省现代控制技术重点实验室, 广东 广州   510070

  • 出版日期:2025-05-25 发布日期:2024-12-13

Hybrid Toolpath Planning and Feedrate Optimization for Complex Pockets Machining Under Constant Loads

WANG Qinghui1  WANG Jingqiang1  DING Xuesong1 LIAO Zhaoyang2   

  1. 1. School of Mechanical and Automotive Engineering, South China University of Technology,Guangzhou 510640, Guangdong,China

    2. Institute of Intelligent Manufacturing, Guangdong Academy of Sciences/ Guangdong Key Laboratory of Modern Control Technology, Guangzhou 510070, Guangdong,China

  • Online:2025-05-25 Published:2024-12-13

摘要:

模具及各类三维零件的数控加工包含了大量型腔特征,其加工轨迹的设计直接影响加工质量与效率。随着高速铣削技术的进步,数控机床为提高型腔加工效率提供了硬件基础,但也对CAM轨迹设计提出了更高要求。传统的CAM轨迹在处理型腔拐角、开槽和环轨迹交汇等区域时,容易导致切削负载突变,这种负载不稳定限制了进给速度和切削深度的提升,影响了加工效率和质量。为应对这些问题,本文提出了一种面向型腔恒负载加工的组合轨迹设计与优化方法。该方法基于多层次区块结构,首先计算材料去除率,并据此将加工区域划分为稳定、半稳定和负载突变区域。针对不同区域,采用环切轨迹、进给速度优化以及变半径摆线轨迹相结合的策略,实现加工过程中负载的平稳控制。特别是通过在负载突变区域应用摆线轨迹,降低了瞬时负载的波动,确保加工过程的稳定性。实验表明,本文提出的轨迹设计与优化方法能够适应各类复杂型腔的CAM轨迹生成,并保障加工过程的负载稳定性,进而提升加工质量。

关键词: 复杂型腔, 恒负载加工, 加工轨迹, 进给速度优化

Abstract:

The CNC machining of molds and various 3D parts involves numerous pocket features, and the design of machining toolpaths directly affects machining quality and efficiency. With advancements in high-speed milling technology, CNC machines provide the hardware foundation for improving pocket machining efficiency, but they also place higher demands on CAM toolpath design. Traditional CAM toolpaths tend to cause abrupt changes in cutting load when dealing with areas such as pocket corners, slots, and intersections of circular paths. This load instability limits the improvement of feed rate and cutting depth, negatively impacting both machining efficiency and quality. To address these issues, this paper proposes a combined toolpath design and optimization method aimed at achieving constant load machining for pockets. The method is based on a multi-level block structure, first calculating the material removal rate (MRR) and then dividing the machining areas into stable, semi-stable, and load fluctuation regions. Different strategies are applied to each region, including circular toolpaths, feed speed optimization, and variable-radius trochoidal paths, to ensure smooth load control throughout the machining process.By applying trochoidal paths in areas prone to load fluctuations, the method reduces sudden load variations and ensures the stability of the machining process. Experimental results show that the proposed design and optimization method is suitable for generating CAM toolpaths for various complex pockets, ensuring load stability and improving machining quality.

Key words: complex cavity, constant load machining, machining trajectory, feed rate optimization