华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (11): 141-150.doi: 10.12141/j.issn.1000-565X.230430

• 智慧交通系统 • 上一篇    

高速列车突入复线隧道的横风效应分析

王磊1,2,3(), 谭忠盛1,2, 骆建军1,2(), 李宇杰3, 李飞龙4, 尚素英5   

  1. 1.北京交通大学 城市地下工程教育部重点实验室,北京 100044
    2.北京交通大学 结构风工程与城市风环境北京市重点实验室,北京 100044
    3.北京市地铁运营有限公司,北京 100044
    4.民航机场规划设计研究总院有限公司,北京 101312
    5.北京新桥技术发展有限公司,北京 100088
  • 收稿日期:2023-06-20 出版日期:2024-11-25 发布日期:2023-09-08
  • 通信作者: 骆建军(1971—),男,博士后,教授,主要从事高铁隧道空气动力学研究。 E-mail:jjluo@bjtu.edu.cn
  • 作者简介:王磊(1987—),男,博士,工程师,主要从事高铁隧道空气动力学研究。E-mail: 17115298@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52378386);北京市地铁运营有限公司科研项目(2022000501000001)

Analysis on Crosswind Effects of a High-Speed Train Breaking into a Double-Track Tunnel

WANG Lei1,2,3(), TAN Zhongsheng1,2, LUO Jianjun1,2(), LI Yujie3, LI Feilong4, SHANG Suying5   

  1. 1.Key Laboratory of Urban Underground Engineering of the Ministry of Education,Beijing Jiaotong University,Beijing 100044,China
    2.Beijing’s Key Laboratory of Structural Wind Engineering and Urban Wind Environment,Beijing Jiaotong University,Beijing 100044,China
    3.Beijing Subway Operation Co. ,Ltd. ,Beijing 100044,China
    4.China Airport Planning and Design Institute,Beijing 101312,China
    5.Beijing Xinqiao Technology Development Co. ,Ltd. ,Beijing 100088,China
  • Received:2023-06-20 Online:2024-11-25 Published:2023-09-08
  • Contact: 骆建军(1971—),男,博士后,教授,主要从事高铁隧道空气动力学研究。 E-mail:jjluo@bjtu.edu.cn
  • About author:王磊(1987—),男,博士,工程师,主要从事高铁隧道空气动力学研究。E-mail: 17115298@bjtu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52378386)

摘要:

横风作用下运行环境不同导致高速列车气动特性发生突变,严重影响列车运行安全和乘客的舒适性。基于高速列车流场的可压缩、非定常特性,建立隧道-列车-横风三维数值模型,采用SST k-ω湍流模型进行求解,通过与动模型试验对比,验证了数值模拟的准确性,进一步分析横风对列车周围流场与表面压力分布的影响,得到了横风作用下列车气动荷载变化规律。研究结果表明:列车周围流场分布受横风影响显著,隧道外流场向列车背风侧偏移,并形成起始于隧道入口处的纵向涡旋,而隧道内列车背风侧涡旋消失,迎风侧形成延伸至入口处的垂向涡旋,并在列车驶入过程中隧道内涡旋结构逐渐消失。在列车驶入隧道前列车迎风面气动压力以正值为主,背风面气动压力以负值为主。当列车驶入隧道时列车表面压力发生剧烈变化,气动压力波动程度随列车驶入而明显减弱。气动荷载变化规律与风环境密切相关,无风时尾车横向力和升力变化幅值最大,而横风下头车横向力和升力变化幅值最大。此外,列车气动性能与编组位置密切相关,横风下头车横向力变化幅值分别是中车、尾车的4.8倍和15.4倍,头车升力变化幅值分别为中车、尾车的1.1倍和1.2倍,头车发生行车安全事故风险最高。研究成果可为类似情形下高速列车运行安全性评价和高铁隧道选线提供参考。

关键词: 高速列车, 横风, 隧道, 气动荷载, 流场

Abstract:

Different operating environments under the action of crosswind lead to an abrupt change in the aerodynamic characteristics of high-speed trains (HSTs), which seriously affect the train operation safety and passenger comfort. Considering the compressibility and unsteady characteristics of flow field, a 3D numerical model including tunnel, HST and crosswind was established, and the SST k-w model was adopted to solve the problem. The accuracy of the numerical simulation was verified by comparing with the dynamic model test. It further analyzed the influence of cross wind on the flow field and surface pressure distribution around the train, and obtained the aerodynamic load change law of the train under the action of cross wind. The results show that the flow field distribution around the train is significantly affected by the crosswind. The flow field shifts to the leeward side of the train outside the tunnel, forming a longitudinal vortex starting from the tunnel entrance, while the vortex structures on the leeward side of the train disappear and form a vertical vortex at the extension entrance in the space on the windward side. Furthermore, the vortex structures in the tunnel disappear as the train enters. Before the train enters the tunnel, the aerodynamic pressure on the windward surfaces of the train is mainly positive, and the aerodynamic pressure on the leeward surfaces is mainly negative.The surface pressure of the train changes most obviously when the train enters the tunnel, and the fluctuation degree of the aerodynamic pressure decreases obviously with the train entering the tunnel. The variation of aerodynamic load is closely related to the wind environment. The side force and lift amplitude of the rear vehicle (RV) are the largest when there is non-crosswind, and the side force and lift amplitude of the head vehicle (HV) are the largest when there is crosswind. In addition, the aerodynamic performance is closely related to the marshaling position. The variation amplitudes of the side force of the HV are 4.8 and 15.4 times of that of the RV, respectively. The variation amplitudes of the lift of HV are 1.1 and 1.2 times of that of RV, respectively. And the risk of traveling safety accidents of the HV is the highest. The research results can provide a reference for the safety evaluation of HST and route selection of high-speed railway tunnels.

Key words: high-speed train, crosswind, tunnel, aerodynamic load, flow field

中图分类号: