华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (10): 48-55.doi: 10.12141/j.issn.1000-565X.190824

• 土木建筑工程 • 上一篇    下一篇

改进的粒子群变异算法在建筑节能优化中的应用

刘刚1,2 王漠2,3 董伟星4 黄文龙4   

  1. 1. 天津大学 建筑学院,天津 300072; 2. 天津大学 天津市建筑物理环境与生态技术重点实验室,天津 300072;3. 天津大学 国际工程师学院,天津 300072; 4. 中国中建设计集团有限公司,北京 100037
  • 收稿日期:2019-11-11 修回日期:2020-05-08 出版日期:2020-10-25 发布日期:2020-09-14
  • 通信作者: 刘刚(1977-),男,教授,博士生导师,主要从事绿色建筑技术研究。 E-mail:lglgmike@163.com
  • 作者简介:刘刚(1977-),男,教授,博士生导师,主要从事绿色建筑技术研究。
  • 基金资助:
    国家重点研发计划项目 (2016YFC0700200); 国家自然科学基金资助项目 (51628803)

Application of Improved Particle Swarm Mutation Algorithm to Building Energy-Saving Optimization

LIU Gang1,2 WANG Mo2,3 DONG Weixing4 HUANG Wenlong4   

  1. 1. School of Architecture,Tianjin University,Tianjin 300072,China; 2. Tianjin Key Laboratory of Architectural Physics and Environmental Technology,Tianjin University,Tianjin 300072,China; 3. International Engineering Institute,Tianjin University,Tianjin 300072,China; 4. China Construction Engineering Design Group Corporation Limited,Beijing 100037,China
  • Received:2019-11-11 Revised:2020-05-08 Online:2020-10-25 Published:2020-09-14
  • Contact: 刘刚(1977-),男,教授,博士生导师,主要从事绿色建筑技术研究。 E-mail:lglgmike@163.com
  • About author:刘刚(1977-),男,教授,博士生导师,主要从事绿色建筑技术研究。
  • Supported by:
    Supported by the National Key R&D Program of China (2016YFC0700200) and the National Natural Science Foundation of China (51628803)

摘要: 由于建筑能耗模型多峰值的特点,使用粒子群算法处理建筑节能优化问题时,容易在局部最优区域过早收敛,将分布式的变异算子与粒子群算法结合可对此进行改进。文中研究了 4 种现有的粒子群变异算法,针对其优化效果的不足,对发生变异的具体操作进行了改进,使用测试函数验证了其有效性,并将其应用到建筑节能优化问题当中。经过大量实验发现,对于文中的建筑节能优化问题,改进的粒子群变异算法相对于现有的粒子群变异算法,其目标函数 (即建筑的太阳能辐射得热量) 的平均值下降了1. 3%以上,收敛率至少提高了 3 倍,寻优效果有明显的改善,证明所提出的改进算法具有有效性和普适性,可以在一般的建筑节能优化问题中推广。

关键词: 建筑节能优化, 粒子群变异算法, 算法改进, 计算机辅助建筑设计

Abstract: When particle swarm optimization algorithm is used in the building energy-saving optimization,it is easy to converge untimely in the local optima due to the multi-peak characteristic of the building energy model. The combination of the distributed mutation operator and particle swarm algorithm can provide a solution to this pro-blem. In this paper,4 existing particle swarm mutation algorithms were studied. Aiming at the problem of low effects of optimization,the specific operations of the mutations were improved,and the effectiveness of 4 improved algo-rithms was verified by test functions. Then,they were applied to a building energy-saving optimization case. Experi-mental results show that,as compared with the existing particle swarm mutation algorithms,the improved algorithm can decrease the average value of object function by 1. 3% at least and increase the convergence rate by over 3 times,which means that the optimization effect is obviously improved. Thus,it is concluded that the improved al-gorithms is effective and applicable in general building energy-saving optimization.

Key words: building energy-saving optimization, particle swarm mutation algorithm, algorithm improvement, computer-aided architecture design