收稿日期: 2010-09-15
修回日期: 2010-11-28
网络出版日期: 2011-04-01
基金资助
国家自然科学基金资助项目(60874114)
Fuzzy LS-SVM Classifier Based on Chaos Genetic Algorithm and Its Application
Received date: 2010-09-15
Revised date: 2010-11-28
Online published: 2011-04-01
Supported by
国家自然科学基金资助项目(60874114)
王禾军 邓飞其 陈治明 . 基于混沌遗传算法的模糊LS-SVM分类器及其应用[J]. 华南理工大学学报(自然科学版), 2011 , 39(5) : 49 -54 . DOI: 10.3969/j.issn.1000-565X.2011.05.009
In order to reduce the sensitivity of the support vector machines ( SVM) to noise and outliers,a new fuzzy least squares-support vector machines classifier based on chaos genetic algorithm is proposed and is abbreviated to FLS-SVMBCGA,in which the clear sets are used to construct a fuzzy membership set and the chaos genetic algorithm is adopted to optimize the parameters. Then,some experiments are carried out on three benchmarking datasets such as the Ripley dataset,the MONK dataset and the PIMA dataset. Finally,the TPD signals from oil and gas transmission pipeline are diagnosed using the proposed classifier. The results show that FLS-SVMBCGA is effective in improving the prediction accuracy of the classification problems with noises or outliers,with a classifying effect for TPD signals being higher than 91.67%,which means that the proposed algorithm can accurately diagnose the TPD signals from oil and gas transmission pipeline.
Key words: chaos; genetic algorithm; support vector machines; classifier
/
| 〈 |
|
〉 |