收稿日期: 2009-12-04
修回日期: 2010-01-29
网络出版日期: 2010-07-25
基金资助
国家自然科学基金委员会与中国民用航空总局联合资助项目(60776816); 广东省自然科学基金重点资助项目(8251064101000005); 广东省科技计划项目(2007B060401007); 广东工业大学青年基金项目(072058); 广东高校优秀青年创新人才培养计划(育苗工程)项目(100070)
High-Attribute Dimensional Sparse Clustering Algorithm Based on Knowledge Granularity
Received date: 2009-12-04
Revised date: 2010-01-29
Online published: 2010-07-25
Supported by
国家自然科学基金委员会与中国民用航空总局联合资助项目(60776816); 广东省自然科学基金重点资助项目(8251064101000005); 广东省科技计划项目(2007B060401007); 广东工业大学青年基金项目(072058); 广东高校优秀青年创新人才培养计划(育苗工程)项目(100070)
赵洁 肖南峰 陈琼 . 基于知识粒度的高属性维稀疏聚类算法[J]. 华南理工大学学报(自然科学版), 2010 , 38(7) : 20 -26 . DOI: 10.3969/j.issn.1000-565X.2010.07.004
Most existing high-attribute dimensional sparse clustering algorithms can only process binary data and are insufficient in evaluating clustering results,which limits their applications. In order to solve this problem,a noval high-attribute dimensional sparse clustering algorithm based on knowledge granularity is proposed. In this algorithm,first,a semi-fuzzy clustering algorithm is persented to discretize sparse data,with which the sparse similarity and the initial equivalence relation are defined. Then,a precision-variable quadratic clustering model is established to refine the results and further to improve the noise resistance of the proposed algorithm. Finally,an applicationoriented evaluation model of clustering quantity is defined. Test results show that the proposed algorithm is suitable for various granularities and helps to obtain high-accuracy of results of reflecting data characteristics.
/
| 〈 |
|
〉 |