土木建筑工程

激光重熔处理对钢结构焊接接头疲劳性能的影响

  • 康澜 ,
  • 李荣文 ,
  • 苏竞裕 ,
  • 冯磊
展开
  • 1.华南理工大学 土木与交通学院,广东 广州 510640
    2.中建三局第三建设工程有限责任公司,湖北 武汉 430000
康澜(1980 —),女,博士,副教授,主要从事钢结构和组合结构研究。E-mail: ctlkang@scut.edu.cn

收稿日期: 2024-07-15

  网络出版日期: 2024-09-26

基金资助

国家自然科学基金项目(52178286)

Influence of Laser Remelting Treatment on Fatigue Performance of Steel Structure Welded Joints

  • KANG Lan ,
  • LI Rongwen ,
  • SU Jingyu ,
  • FENG Lei
Expand
  • 1.School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China
    2.The Third Construction Engineering Co. ,Ltd of China Construction Third Engineering Bureau,Wuhan 430000,Hubei,China

Received date: 2024-07-15

  Online published: 2024-09-26

Supported by

the National Natural Science Foundation of China(52178286)

摘要

焊接作为钢结构连接的重要手段,焊接接头的疲劳性能关系到钢结构的安全。为了提高钢结构焊接接头的疲劳性能,该研究提出采用激光重熔处理焊接接头。为此,该文开展了Q355钢板对接焊接的焊态接头与激光重熔处理接头的高周疲劳试验,通过焊态接头拉伸试验确定了高周疲劳试验的应力水平,采用扫描电子显微镜进行了疲劳断口分析,根据试验结果拟合了焊态焊接接头与激光重熔焊接接头的应力-寿命(S-N)疲劳曲线,并与规范疲劳公式进行了对比。试验结果表明:激光重熔处理可以改变焊接接头疲劳断裂的位置,避免焊接接头在焊趾处产生疲劳破坏,并显著提升焊接接头的疲劳寿命,平均提升幅度介于244%~499%之间;疲劳断口分析表明,焊态接头主要存在棘轮状裂纹源和少量次表面裂纹源,激光重熔处理接头主要存在转角裂纹源和边缘裂纹源;与规范对比结果表明,美国钢结构规范ANSI/AISC360-22、欧洲规范EN 1993-1-9:2005和海上钢结构设计推荐方法DNV-RP-C203给出的疲劳性能设计曲线可适用于焊态接头的疲劳性能,而对于激光重熔处理的焊接接头疲劳性能均偏于保守。

本文引用格式

康澜 , 李荣文 , 苏竞裕 , 冯磊 . 激光重熔处理对钢结构焊接接头疲劳性能的影响[J]. 华南理工大学学报(自然科学版), 2025 , 53(6) : 1 -11 . DOI: 10.12141/j.issn.1000-565X.240357

Abstract

As a crucial method for connecting steel structures, welding plays a vital role in ensuring structural integrity, and the fatigue performance of welded joints directly affects the overall safety of steel structures. To enhance the fatigue performance of welded joints in steel structures, this study proposed the use of laser remelting treatment on the welded joints. For this purpose, this study conducted high cycle fatigue tests on the as-welded joints and laser remelting treated welded joints of Q355 steel plate butt welding. The stress levels for high-cycle fatigue tests were determined through tensile tests on as-welded joints. Fatigue fracture surface analysis was conducted using scanning electron microscopy (SEM). Based on the experimental results, stress-life (S-N) fatigue curves were fitted for both the as-welded joints and the laser-remelted welded joints, and the results were compared with standard fatigue design curves specified in relevant codes. The experimental results show that laser remelting treatment can change the location of fatigue fracture in welded joints, prevent failure at the weld toe and thereby significantly improve the fatigue life of welded joints, with an average increase of 244% to 499%. The fatigue fracture analysis show that there were mainly ratchet crack sources and a few subsurface crack sources in the as-welded joints, and there are mainly corner crack sources and edge crack sources in the laser remelted joints; the fatigue performance design curves provided by the American Steel Structure Code ANSI/AISC360-22, European Code EN 1993-1-9:2005, and Recommended Method for Offshore Steel Structure Design DNV-RP-C203 can be applied to the fatigue performance of as-welded joints, while these curves tend to be conservative for laser-remelted welded joints.

参考文献

1 郭宏超,毛宽宏,万金怀,等 .高强度钢材疲劳性能研究进展[J].建筑结构学报201940(4):17-28.
  GUO Hongchao, MAO Kuanhong, WAN Jinhuai,et al .Research progress on fatigue properties of high strength steels[J].Journal of Building Structures201940(4):17-28.
2 RADAJ D, SONSINO C M, FRICKE W .Recent deve-lopments in local concepts of fatigue assessment of welded joints[J].International Journal of Fatigue200931(1):2-11.
3 WANG D Q Q, YAO D D, GAO Z B,et al .Fatigue mechanism of medium-carbon steel welded joint:competitive impacts of various defects[J].International Journal of Fatigue2021151:106363/1-11.
4 BRAUN M, WANG X .A review of fatigue test data on weld toe grinding and weld profiling[J].International Journal of Fatigue2021145:106073/1-16.
5 RAMALHO A L, FERREIRA J A M, BRANCO C A G M .Fatigue behaviour of T welded joints rehabilitated by tungsten inert gas and plasma dressing[J].Materials & Design201132(10):4705-4713.
6 GAN J, SUN D, WANG Z,et al .The effect of shot peening on fatigue life of Q345D T-welded joint[J].Journal of Constructional Steel Research2016126:74-82.
7 MALAKI M, DING H .A review of ultrasonic peening treatment[J].Materials & Design201587:1072-1086.
8 DHAKAL B, SWAROOP S .Review:laser shock pee-ning as post welding treatment technique[J].Journal of Manufacturing Processes201832:721-733.
9 CHAN W L, CHENG H K F .Hammer peening techno-logy—the past,present,and future[J].International Journal of Advanced Manufacturing Technology2022118(3/4):683-701.
10 CHAISE T, LI J, NELIAS D,et al .Modelling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP)[J].Journal of Materials Processing Techno-logy2012212(10):2080-2090.
11 CUNHA A, GIACOMELLI R O, KAUFMAN J,et al .An overview on laser shock peening process:from science to industrial applications[C]∥Proceedings of the 2021 SBFoton International Optics and Photonics Conference (SBFoton IOPC).Sao Carlos,Brazil:IEEE,2021:1-6.
12 李坤,房嘉辉,廖若冰,等 .高性能金属激光能量场表面热处理技术研究现状及展望(特邀)[J].中国激光202451(4):121-137.
  LI Kun, FANG Jiahui, LIAO Ruobing,et al .Current research status and future prospects for high-performance metal laser-energy-field surface heat treatment technologies (invited)[J].China Journal of Laser202451(4):121-137.
13 YU Y, ZHANG M, GUAN Y,et al .The effects of laser remelting on the microstructure and performance of bainitic steel[J].Metals20199(8):912/1-12.
14 YAO Y, LI X, WANG Y Y,et al .Microstructural evolution and mechanical properties of Ti-Zr beta titanium alloy after laser surface remelting[J].Journal of Alloys and Compounds2014583:43-47.
15 VIDYASAGAR K E C, RANA A, KALYANASUNDARAM D .Optimization of laser parameters for improved corrosion resistance of nitinol[J].Materials and Manufacturing Processes202035(14):1661-1669.
16 李鸿鹏,盛金马,黎彬,等 .激光表面强化316L不锈钢的组织与性能研究[J].激光与光电子学进展202057(19):199-204.
  LI Hongpeng, SHENG Jinma, LI Bin,et al .Microstructures and properties of laser surface-reinforced 316L stainless steel[J].Laser & Optoelectronics Progress202057(19):199-204.
17 LAGO J, BOK?VKA O, NOVY F .The weld toe improvement of advanced HSLA steel by laser remelting[J].Materials Today:Proceedings20163(4):1037-1040.
18 STAMM H, HOLZWARTH U, BOERMAN D J,et al .Effect of laser surface treatment on high cycle fatigue of AISI 316L stainless steel[J].Fatigue & Fracture of Engineering Materials & Structures199619(8):985-995.
19 ZHAO X, ZHANG H, LIU Y .Effect of laser surface remelting on the fatigue crack propagation rate of 40Cr steel[J].Results in Physics201912:424-431.
20 SARKAR S, KUMAR C S, NATH A K. Effects of different surface modifications on the fatigue life of selective laser melted 15-5 PH stainless steel[J].Mate-rials Science & Engineering A2019762:138109/1-14.
21 FROSTEVARG J, TORKAMANY M J, POWELL J,et al .Improving weld quality by laser re-melting[J].Journal of Laser Applications201426(4):041502/1-4.
22 POWELL J, ILAR T, FROSTEVARG J,et al .Weld root instabilities in fiber laser welding[J].Journal of Laser Applications201527:S29008/1-5.
23 邓德伟,马云波,马玉山,等 .重熔及退火对316L不锈钢激光熔覆层残余应力的影响[J].金属热处理202045(8):113-118.
  DENG Dewei, MA Yunbo, MA Yushan,et al .Influence of remelting and annealing on residual stress of 316L stainless steel laser clad layer[J].Heat Treatment of Metals202045(8):113-118.
24 GUENNEC B, UENO A, SAKAI T,et al .Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior[J].International Journal of Fatigue201466:29-38.
25 HONG Y, HU Y, ZHAO A .Effects of loading frequency on fatigue behavior of metallic materials:a li-terature review[J].Fatigue & Fracture of Engineering Materials & Structures202346(8):3077-3098.
26 LIAO X, WANG Y, WANG Z,et al .Effect of low temperatures on constant amplitude fatigue properties of Q345qD steel butt-welded joints[J].Engineering Failure Analysis2019105:597-609.
27 TONG L W, NIU L C, REN Z Z,et al .Experimental investigation on fatigue behavior of butt-welded high-strength steel plates[J].Thin-Walled Structures2021165:107956/1-11.
28 Specification for structural steel buildings:ANSI/AI [S].
29 Eurocode 3:design of steel structure-Part 1-9:fatigue:EN 1993-1-9 [S].
30 Fatigue design of offshore steel structures:DNV-RP-C203 [S].
文章导航

/