机械工程

一种可调谐非线性磁式压电能量采集器

展开
  • 1.广西大学 机械工程学院,广西 南宁 530004
    2.华南理工大学 机械与汽车工程学院,广东 广州 510640
丁江(1986-),男,博士,副教授,主要从事机械机构构型设计与动态性能优化研究。

收稿日期: 2022-11-22

  网络出版日期: 2023-03-30

基金资助

国家自然科学基金资助项目(51905113);广西自然科学基金资助项目(2021GXNSFAA220095);粤桂联合基金资助项目(2021A1515410003);广西科技重大专项(桂科AA22068055)

A Tunable Nonlinear Magnetic Piezoelectric Energy Harvester

Expand
  • 1.College of Mechanical Engineering,Guangxi University,Nanning 530004,Guangxi,China
    2.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
丁江(1986-),男,博士,副教授,主要从事机械机构构型设计与动态性能优化研究。

Received date: 2022-11-22

  Online published: 2023-03-30

Supported by

the National Natural Science Foundation of China(51905113);the Natural Science Foundation of Guangxi Province(2021GXNSFAA220095);Guangdong-Guangxi Joint Fund(2021A1515410003);the Science and Technology Major Project of Guangxi(GuikeAA22068055)

摘要

为拓宽压电能量采集器的有效频带,通过在附有末端磁铁的压电悬臂梁上增加一对移动磁铁,设计了一种频率可调、单-双稳态模式可快速切换的非线性磁式压电能量采集器。首先,对采集器进行分布参数动力学分析,基于Euler-Bernoulli理论推导了系统动力学方程,根据Lagrange函数分析系统动能、势能和电能表达式,利用磁偶极子模型得到系统的磁力表达式,通过Galerkin离散方法和泰勒展开得到系统的一阶降阶模型,利用谐波平衡法得到方程的解析表达式。随后,利用仿真软件分别对采集器的单-双稳态特性进行研究,分析了磁铁间距、阻尼、负载等参数对系统输出电压和功率的影响,并通过实验进行验证。实验结果表明:通过移动磁铁引进的非线性磁力有效增加了采集器的输出电压和输出功率;通过改变磁铁间距改变能量采集器的谐振频率,较好地拓宽了采集器的工作频带;系统可通过调节磁铁间距实现单稳态模式与双稳态模式之间的切换,能够分别利用单稳态模式和双稳态模式收集高频和低频环境下的振动能量。

本文引用格式

丁江, 卢蒙恩, 曾梓洋, 等 . 一种可调谐非线性磁式压电能量采集器[J]. 华南理工大学学报(自然科学版), 2023 , 51(9) : 30 -43 . DOI: 10.12141/j.issn.1000-565X.220767

Abstract

To broaden the effective frequency band of piezoelectric energy harvesters, this paper designed a nonlinear magnetic piezoelectric energy harvester with adjustable frequency and fast switching between monostable and bi-stable mode. This harvester is composed by adding a pair of movable magnets on a piezoelectric cantilever beam with an end magnet. Firstly, the distributed parameter dynamics of the harvester was analyzed. The dynamics equation of the system was derived based on Euler-Bernoulli theory, and the expressions of kinetic energy, potential energy and electric energy of the system were analyzed according to Lagrange function. The magnetic force expression of the system was obtained according to the magnetic dipole model. The first-order reduced model of the system was obtained by Galerkin discrete method and Taylor expansion, and the analytical expression of the equations was derived via the harmonic balance method. Then, the monostable and bi-stable characteristics of the harvester were studied by simulation software, and the effects of magnet spacing, damping, load resistance and other parameters on the output voltage and output power of the system were analyzed and verified by the subsequent experiment. According to the experimental result, the nonlinear magnetic force brought by the movable magnet can significantly increase the output voltage and output power of the harvester; the resonant frequency of the energy harvester can be changed by adjusting the magnet spacing, which better widens the working frequency band; the energy harvesting system can rapidly switch between monostable mode and bi-stable mode by adjusting the magnet spacing, and use the monostable mode and and the bi-stable mode to harvest vibration energy in high-frequency environment and the low-frequency environment, respectively.

参考文献

1 SI H Y, DONG J L, CHEN L,et al .Study of the ambient vibration energy harvesting based on piezoelectric effect[J].International Journal of Nanoscience201514(1/2):1460017/1-7.
2 孟广伟,李霄琳,周立明,等 .基于MEMsFEM的功能梯度压电板力电耦合分析[J].华南理工大学学报(自然科学版)201644(10):81-86.
  MENG Guang-wei, LI Xiao-lin, ZHOU Li-ming,et al .Electromechanical coupling analysis of functionally graded piezoelectric plate based on MEMsFEM[J].Journal of South China University of Technology(Natural Science Edition)201644(10):81-86.
3 ZOU H X, LI M, ZHAO L C,et al .A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting[J].Energy2021217:119429/1-8.
4 黄怀纬,贺万里,曹亚军 .基于多尺度法的预载压电梁俘能特性[J].华南理工大学学报(自然科学版)202250(5):118-126.
  HUANG Huaiwei, HE Wanli, CAO Yajun .Energy harvesting characteristics of preloaded piezoelectric beams based on multi-scale approach[J].Journal of South China University of Technology(Natural Science Edition)202250(5):118-126.
5 SHAHRUZ S M .Design of mechanical band-pass filters with large frequency bands for energy scavenging[J].Mechatronics200616(9):523-531.
6 RAMLAN R, BRENNAN M J, MACE B R,et al.Potential benefits of a non-linear stiffness in an energy harvesting device[J].Nonlinear Dynamics201059(4):545-558.
7 CHALLA V R, PRASAD M G, SHI Y,et al .A vibration energy harvesting device with bidirectional resonance frequency tunability[J].Smart Materials and Structures200817(1):15035/1-10.
8 STANTON S C, MCGEHEE C C, MANN B P .Reversible hysteresis for broadband magnetopiezoelastic energy harvesting[J].Applied Physics Letters200995(17):174103/1-3.
9 YANG W, TOWFIGHIAN S .A parametric resonator with low threshold excitation for vibration energy harvesting[J].Journal of Sound and Vibration2019446:129-143.
10 MANSOUR M O, ARAFA M H, MEGAHED M S .Resonator with magnetically adjustable natural frequency for vibration energy harvesting[J].Sensors and Actuators A Physical2010163(1):297-303.
11 FERRARI M, BAù M, GUIZZETTI M,et al .A single-magnet nonlinear piezoelectric converter for enhanced energy harvesting from random vibrations[J].Sensors and Actuators A-Physical2011172(1):287-292.
12 WANG G Q, WU H Q, LIAO S J,et al .A modified magnetic force model and experimental validation of a tri-stable piezoelectric energy harvester [J].Journal of International Material Systems and Structures202031(7):967-979.
13 WU H, SOH C K, TANG L H,et al .Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester[J].Journal of Intelligent Material Systems and Structures201425(14):1875-1889.
14 FIROOZY P, KHADEM S E, POURKIAEE S M .Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam[J].International Journal of Engineering Science2017111:113-133.
15 唐炜,王小璞,曹景军 .非线性磁式压电振动能量采集系统建模与分析[J].物理学报201463(24):76-89.
  TANG Wei, WANG Xiaopu, CAO Jingjun .Modeling and analysis of piezoelectric vibration energy harvesting system using permanent magnetics[J].Acta Physica Sinica201463(24):76-89.
16 吴义鹏,季宏丽,裘进浩,等 .共振频率可调式非线性压振动能量收集器[J].振动与冲击201736(5):12-16.
  WU Yipeng, JI Hongli, QIU Jinhao,et al .A nonlinear piezoelectric vibration energy harvesting device with tunable resonance frequencies[J].Journal of Vibration and Shock201736(5):12-16.
17 杜小振,张龙波,于红 .磁力调频压电电磁复合发电设计与实验[J].光学精密工程201624(11):2753-2760.
  DU Xiaozhen, ZHANG Longbo, YU Hong .Design and experiment of piezoelectric electromagnetic hybrid broadband generator with magnetic force tuning[J].Optical and Precision Engineering201624(11):2753-2760.
18 DAI H L, WANG Y K, WANG L .Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory[J].International Journal of Engineering Science201594:103-112.
19 FAROKHI H, GHAYESH M H, HUSSAIN S .Large-amplitude dynamical behaviour of microcantilevers[J].International Journal of Engineering Science2016106:29-41.
20 FRISWELL M I, ALI S F, BILGEN O,et al .Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass[J].Journal of Intelligent Material Systems and Structures201223(13):1505-1521.
21 ERTURK A, INMAN D J .An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations[J].Smart Materials and Structures200918(2):025009-1-18.
22 ERTURK A, INMAN D J .Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling[J].Journal of Sound and Vibration2011330(10):2339-2353.
文章导航

/