能源、动力与电气工程

多网络协作下电动汽车参与电力市场的调度策略

  • 董萍 ,
  • 韦述阳 ,
  • 刘明波
展开
  • 华南理工大学 电力学院,广东 广州 510640
董萍(1978-),女,博士,副教授,主要从事电力市场、电力系统分析运行与优化控制等研究。E-mail: epdping@scut.edu.cn

收稿日期: 2022-12-21

  网络出版日期: 2023-03-30

基金资助

国家自然科学基金资助项目(52077083);广东自然科学基金资助项目(2021A1515012073);南方电网重点科技项目(090000KK52210134)

Scheduling Strategies for Electric Vehicle Participation in Electricity Markets Under Multi-Network Collaboration

  • DONG Ping ,
  • WEI Shuyang ,
  • LIU Mingbo
Expand
  • School of Electric Power Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
董萍(1978-),女,博士,副教授,主要从事电力市场、电力系统分析运行与优化控制等研究。E-mail: epdping@scut.edu.cn

Received date: 2022-12-21

  Online published: 2023-03-30

Supported by

the National Natural Science Foundation of China(52077083);the Natural Science Foundation of Guangdong Province(2021A1515012073);the Key Technology Projects of China Southern Power Grid(090000KK52210134)

摘要

针对电动汽车充电需求的时空不确定性,电动汽车代理商如何参与电力市场并且如何实现运营利润最大化成为需要解决的问题。本研究首先建立基于多层深度学习算法的电动汽车出行预测模型,分别使用多层感知器和长短期记忆网络对电动汽车的出行数据和路况数据进行学习,通过训练好的预测模型预测次日的出行行为和路况。其次,考虑到路况的多变性对预测精度的影响,采用未来路径滚动优化方法和速度-能耗模型模拟次日电动汽车的出行行为,从而获取电动汽车更精确的时空状态和荷电状态。最后,考虑能量市场协同调度,通过日前市场的充放电调度模型对不同时段的电动汽车充放电行为进行规划,最大化电动汽车代理商的利益。为了证明所提预测方法的准确性,与预测常用的蒙特卡洛方法和拉丁超立方法进行对比,结果表明,本研究提出的深度学习算法具有更高的准确性。将模型应用于IEEE33节点测试系统中进行验证,实验结果表明,在电动汽车代理商的调度下能够有效降低电力系统的峰谷差,在系统出现阻塞的情况下,通过改变电动汽车的调度策略能够缓解系统线路阻塞问题。对代理商收益和用户出行成本进行分析,结果表明在代理商的调度下,不仅能够提高代理商收入还能够降低用户的出行成本,实现双赢。

本文引用格式

董萍 , 韦述阳 , 刘明波 . 多网络协作下电动汽车参与电力市场的调度策略[J]. 华南理工大学学报(自然科学版), 2023 , 51(12) : 83 -94 . DOI: 10.12141/j.issn.1000-565X.220822

Abstract

In view of the time-space uncertainty of electric vehicle charging demand, how to participate in the electricity market and how to maximize the operating profit has become a problem that needs to be solved. Firstly, this study established an electric vehicle travel prediction model based on multi-layer deep learning algorithm. The multilayer perceptron and long short-term memory network were used to learn the travel data and road condition data of electric vehicles, and the travel behavior and road condition of the next day were predicted by the trained prediction model. Secondly, considering the influence of the variability of road conditions on the prediction accuracy, the future path rolling optimization method and the speed-energy consumption model were used to simulate the travel behavior of electric vehicles the next day, so as to obtain more accurate time-space state and charge state of electric vehicles. Finally, considering the coordinated scheduling of the energy market, the charging and discharging behavior of electric vehicles in different periods was planned through the charging and discharging scheduling model of the day-ahead market to maximize the interests of electric vehicle agents. In order to prove the accuracy of the proposed prediction method, it was compared with the commonly used Monte Carlo method and Latin hypercube method. The results show that the deep learning algorithm proposed in this study has higher accuracy. The model was applied to the IEEE33 node test system for verification. The experimental results show that the peak-valley difference of the power system can be effectively reduced under the scheduling of electric vehicle agents. In the case of system congestion, the problem of system line congestion can be alleviated by changing the scheduling strategy of electric vehicles. The agent’s revenue and the user’s travel cost were analyzed. The results show that under the agent’s scheduling, it can not only increase the income of agents, but also reduce the travel cost of users, and achieve a win-win situation.

参考文献

1 于保军,于文函,孙伦杰,等 .“十三五”我国纯电动汽车战略规划分析[J].汽车工业研究2018 (2):40-48.
  YU Baojun, YU Wenhan, SUN Lunjie,et al .Analysis of China’s pure electric vehicle strategic planning during the 13th Five-Year Plan[J].Auto Industry Research2018(2):40-48.
2 任泽平,连一席,郭双桃 .全球新能源汽车发展报告2020:百年未有之大变局[DB/OL].(2020-07-28)[2022-12-20].
3 TANG D, WANG P .Nodal impact assessment and alleviation of moving electric vehicle loads:from traffic flow to power flow[J].IEEE Transactions on Power Systems201631(6):4231-4242.
4 LUNZ B, YAN Z, GERSCHLER J B,et al .Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs[J].Energy Policy201246(1):511-519.
5 王锡凡,邵成成,王秀丽,等 .电动汽车充电负荷与调度控制策略综述[J].中国电机工程学报201333(1):1-10.
  WANG Xifan, SHAO Chengcheng, WANG Xiuli,et al .Survey of electric vehicle charging load and dispatch control strategies[J].Proceedings of the CSEE201333(1):1-10.
6 CLEMENT-NYNS K, HAESEN E, DRIESEN J .The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J].IEEE Transactions on Power Systems201025(1):371-380.
7 IWAFUNE Y, OGIMOTO K, KOBAYASHI Y,et al .Driving simulator for electric vehicles using the Markov chain Monte Carlo method and evaluation of the demand response effect in residential houses[J].IEEE Access20208(1):47654-47663.
8 TAO S, LIAO K, XIAO X,et al .Charging demand for electric vehicle based on stochastic analysis of trip chain[J].IET Generation,Transmission & Distribution201610(11):2689-2698.
9 TANG D, WANG P .Probabilistic modeling of nodal charging demand based on spatial-temporal dynamics of moving electric vehicles[J].IEEE Transactions on Smart Grid20167(2):627-36.
10 张谦,王众,谭维玉,等 .基于MDP随机路径模拟的电动汽车充电负荷时空分布预测[J].电力系统自动化201842(20):59-66.
  ZHANG Qian, WANG Zhong, TAN Weiyu,et al .Spatial-temporal distribution prediction of charging load for electric vehicle based on MDP random path simulation[J].Automation of Electric Power Systems201842(20):59-66.
11 蒋卓臻,向月,刘俊勇,等 .集成电动汽车全轨迹空间的充电负荷建模及对配电网可靠性的影响[J].电网技术201943(10):3789-3800.
  JIANG Zhuozhen, XIANG Yue, LIU Junyong,et al .Charging load modeling integrated with electric vehicle whole trajectory space and its impact on distribution network reliability[J].Power System Technology201943(10):3789-3800.
12 CHEN L, YANG F, XING Q,et al .Spatial-temporal distribution prediction of charging load for electric vehicles based on dynamic traffic information[C]∥Proceedings of 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2).Wuhan:IEEE,2020:1269-1274.
13 孙志军,薛磊,许阳明,等 .深度学习研究综述[J].计算机应用研究201229(8):2806-2810.
  SUN Zhijun, XUE Lei, XU Yangming,et al .Overview of deep learning[J].Application Research of Computers201229(8):2806-2810.
14 MALEK Y N, NAJIB M, BAKHOUYA M,et al .Multivariate deep learning approach for electric vehicle speed forecasting[J].Big Data Mining and Analytics20214(1):56-64.
15 李彬 .基于深度学习的电动汽车负荷预测研究[D].长沙:长沙理工大学,2019.
16 朱俊丞 .基于深度学习的多时间尺度电动汽车充电负荷预测模型设计[D].郑州:郑州大学,2020.
17 LIN J, DONG P, LIU M,et al .Research on demand response of electric vehicle agents based on multi-layer machine learning agorithm[J].IEEE Access20208(1):224224-224234.
18 温剑锋,陶顺,肖湘宁,等 .基于出行链随机模拟的电动汽车充电需求分析[J].电网技术201539(6):1477-1484.
  WEN Jianfeng, TAO Shun, XIAO Xiangning,et al .Analysis on charging demand of EV based on stochastic simulation of trip chain[J].Power System Technology201539(6):1477-1484.
19 张晨彧,丁明,张晶晶 .基于交通出行矩阵的私家车充电负荷时空分布预测[J].电工技术学报201732(1):78-87.
  ZHANG Chenyu, DING Ming, ZHANG Jingjing .A temporal and spatial distribution forecasting of private car charging load based on origin-destination matrix [J].Transactions of China Electrotechnical Society201732(1):78-87.
20 严弈遥,罗禹贡,朱陶,等 .融合电网和交通网信息的电动车辆最优充电路径推荐策略[J].中国电机工程学报201535(2):310-318.
  YAN Yiyao, LUO Yugong, ZHU Tao,et al .Optimal charging route recommendation method based on transportation and distribution information[J].Proceedings of the CSEE201535(2):310-318.
21 杨洪明,李明,文福拴,等 .利用实时交通信息感知的电动汽车路径选择和充电导航策略[J].电力系统自动化201741(11):106-113.
  YANG Hongming, LI Ming, WEN Fushuan,et al .Route selection and charging navigation strategy for electric vehicles employing real-time traffic information perception[J].Automation of Electric Power Systems201741(11):106-113.
22 侯慧,樊浩,苏舒,等 .多方互利共赢的电动汽车智能充电服务策略[J].电力系统自动化201741(19):66-73.
  HOU Hui, FAN Hao, SU Shu,et al .Multilateral win-win strategy for smart charging service of electric vehicle[J].Automation of Electric Power Systems201741(19):66-73.
23 程杉,王贤宁,冯毅煁 .电动汽车充电站有序充电调度的分散式优化[J].电力系统自动化201842(1):39-46.
  CHEN Shan, WANG Xianning, FENG Yichen .Decentralized optimization of ordered charging scheduling in electric vehicle charging station[J].Automation of Electric Power Systems201842(1):39-46.
24 陈奎,马子龙,周思宇,等 .电动汽车两阶段多目标有序充电策略研究[J].电力系统保护与控制202048(1):65-72.
  CHEN Kui, MA Zilong, ZHOU Siyu,et al .Charging control strategy for electric vehicles based on two-stage multi-target optimization[J].Power System Protection and Control202048(1):65-72.
25 GALUS M D, WARAICH R A, NOEMBRINI F,et al. Integrating power systems,transport systems and vehicle technology for electric mobility impact assessment and efficient control[J].IEEE Transactions on Smart Grid20123(2):934-949.
26 宋媛媛 .基于行驶工况的纯电动汽车能耗建模及续驶里程估算研究[D].北京:北京交通大学,2014.
27 LUO Y, ZHU T, WAN S,et al .Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems[J].Energy201697:359-368.
28 XU B, ZHAO J, ZHENG T,et al .Factoring the cycle aging cost of batteries participating in electricity markets[J].IEEE Transactions on Power Systems201733(2):2248-2259.
29 缪鹏彬 .基于改进核密度估计和拉丁超立方抽样的电动汽车负荷模型[D].重庆:重庆大学,2016.
30 PAPAVASILIOU A .Analysis of distribution locational marginal prices[J].IEEE Transactions on Smart Grid20189(5):4872-4882.
31 广东省发展和改革委员会 .关于进一步完善我省峰谷分时电价政策有关问题的通知[EB/OL].(2021-08-31)[2022-12-20]..
32 广东省发展和改革委员会 .广州市发展改革委关于电动汽车充电服务费试行收费标准的通知[EB/OL].(2017-01-04)[2022-12-20]..
文章导航

/