收稿日期: 2023-02-06
网络出版日期: 2023-03-28
基金资助
国家自然科学基金重点项目(51637002)
Axial Temperature Rise Characteristics of Overhead Line Broken Strand Defects and Identification Method
Received date: 2023-02-06
Online published: 2023-03-28
Supported by
the Key Program of National Natural Science Foundation of China(51637002)
运行中的户外架空输电线路断股缺陷将引发局部过余温升,温度极大值出现在缺陷处,并向无缺陷区域迅速衰减。基于温度分布的红外热成像技术能识别断股缺陷程度,但不同的风速会显著影响观测对象表面温度,为红外热像检测带来困难。为研究低风速下架空线路断股处轴向温度分布,以LGJ-240/30钢芯铝绞线为例,在重庆大学输配电装备及系统安全与新技术全国重点实验室的人工气候室对其进行热循环试验。通过人工破坏制造断股缺陷,利用自制集风装置调节风速,交流大电流发生装置提供稳定的焦耳热源,得到断股数对线路缺陷背侧最大温升与轴向无缺陷区域温差的影响规律,并基于此提出风速为1~3 m/s时,线路断股数红外识别方法,最后通过在雪峰山能源装备安全国家野外科学观测研究站进行自然实验对该方法进行验证。结果表明:架空输电线路发生断股后,缺陷温度极大值与非缺陷区域正常温度的轴向温差随风速增大迅速减小;轴向温差θ和风速u拟合关系式中,描述传热项的拟合系数b随载流量、断股数增加而增加;在低风速条件且线路载流量为360、480及600 A,断股数大于3时,通过提出的方法断股数识别准确率大于90.1%,断股缺陷识别率大于94%,解决了低风速下红外热巡检工程无法实施而错失最佳检修时间的难题,使线路检修效率大幅提高,从而保障电网安全稳定运行,对架空输电线路红外热巡检工程具有指导意义。
蒋兴良 , 黄武鸿 , 廖乙 , 张志劲 , 胡建林 . 架空线路断股缺陷的轴向温升特性及识别方法[J]. 华南理工大学学报(自然科学版), 2023 , 51(12) : 73 -82 . DOI: 10.12141/j.issn.1000-565X.230035
Defects in operating outdoor overhead transmission lines with broken strands will cause local excess temperature rise. The maximum temperature occurs at the defect and decays rapidly to a defect-free area. Infrared thermography based on temperature distribution can identify the degree of broken strands defects. However, the wind speed will significantly reduce the surface temperature of the observed object, making infrared detection difficult. To study the axial temperature distribution at the broken strand area of overhead lines under low wind speed, the paper took the LGJ-240/30 type steel-cored aluminum strand as an example, and conducted thermal cycling tests in the State Key Laboratory of Power Transmission Equipment & System Security and New Technology of Chongqing University. The broken strand defect was produced by manual destruction, the homemade wind speed was regulated by the air collecting device, and the AC large current generator provided a stable Joule heat source. The influence of the number of broken strands on the maximum temperature rise at the back of the defect and the temperature difference in the axial defect-free area was obtained. And based on this, the infrared identification method of broken strand number when the wind speed is 1~3 m/s was proposed. Finally, the method was verified by natural experiments in the National Field Science Observation and Research Station. The results show that after the occurrence of strand breaks in overhead transmission lines, the axial temperature difference between the extreme value of the defective temperature and the normal temperature in the non-defective area decreases rapidly with the increase of the wind speed; the fitting coefficient b, which describes the heat transfer term in the fitting equation of the axial temperature difference θ and the wind speed u, increases with the increase of current carrying capacity and the number of strand breaks. The proposed method has a recognition rate of more than 90.1% for the number of broken strands and more than 94% for defects under the condition of low wind speed, the load current is 360, 480, and 600 A, and the number of broken strands is more than 3. It solves the problem of infrared thermal inspection project under low wind speed without missing the best maintenance time, greatly improves the maintenance efficiency of line maintenance, guarantees the safe and stable operation of power grid, and has guiding significance for the infrared thermal inspection project of overhead transmission lines.
| 1 | 郭日彩,李明,徐晓东,等 .加快电网建设新技术推广应用的研究与建议[J].电网技术,2006,30(2):23-29. |
| GUO Ricai, LI Ming, XU Xiaodong,et al .Research and suggestions on speeding up dissemination and application of new technologies for power grid construction[J].Power System Technology,2006,30(2):23-29. | |
| 2 | 韩兴波,吴海涛,郭思华,等 .输电线路单导线覆冰和扭转的相互影响机制分析[J].电工技术学报,2022,37(17):4508-4516. |
| HAN Xingbo, WU Haitao, GUO Sihua,et al .Analysis of interaction mechanism between icing and torsion of single transmission lines[J].Transactions of China Electrotechnical Society,2022,37(17):4508-4516. | |
| 3 | MEYBER R A, SALAS F, DOMINGUES L,et al .Experimental study on the transformer effect in an ACSR cable [J].International Journal of Electrical Power & Energy Systems,2020,119(6):1058-1075. |
| 4 | MURPHY S, NIEBUR D .Solving the overhead transmission conductor heat balance equation using the newton raphson algorithm[J].IEEE Transactions on Power Delivery,2021,36(6):3743-3751. |
| 5 | XIE P, FANG Z .Lightning performance of unshielded 220 kV transmission lines equipped with metal oxide arresters[J].IEEE Transactions on Electromagnetic Compatibility,2022,64(3):795-804. |
| 6 | LIU Q, JIA R, LIU Y,et al .Infrared image super-resolution reconstruction by using generative adversarial network with an attention mechanism[J].Applied Intelligence,2021,51(4):2018-2030. |
| 7 | 徐奇伟,黄宏,张雪锋,等 .基于改进区域全卷积网络的高压引线接头红外图像特征分析的在线故障诊断方法[J].电工技术学报,2021,36(7):1380-1388. |
| XU Qiwei, HUANG Hong, ZHANG Xuefeng,et al .Online fault diagnosis method for infrared image feature analysis of high-voltage lead connectors based on improved R-FCN[J].Transactions of China Electrotechnical Society,2021,36(7):1380-1388. | |
| 8 | ZHU H, LI Q, TAO C,et al .Multispectral camouflage for infrared,visible,lasers and microwave with radiative cooling[J].Nature Communications,2021,12(1):1467-1481. |
| 9 | IEEE standard for calculating the current-temperature relationship of bare overhead conductors:IEEE Std 738-2012 [S]. |
| 10 | Guide for thermal rating calculation of overhead lines:Technical Brochure 601 [S]. |
| 11 | 张辉,韩学山,王艳玲 .架空输电线路运行载流量分析[J].电网技术,2008,6(14):31-35. |
| ZHANG Hui, HAN Xueshan, WANG Yanling .Analysis on current carrying capacity of overhead lines being operated[J].Power System Technology,2008,6(14):31-35. | |
| 12 | 严伯伦,谢红刚,杨明 .微气象分析与载流量预测结合的动态线路增容方法[J].电力系统及其自动化学报,2022,34(12):137-144. |
| YAN Bolun, XIE Honggang, YANG Ming .Dynamic line rating method combining micrometeorological analysis and ampacity forecasting[J].Proceedings of the CSU-EPSA, 2022,34(12):137-144. | |
| 13 | FU X G, LIN G S, YANG X B .Parameter identification for current-temperature relationship of contact wire under natural convection[J].International Journal of Electrical Power & Energy Systems,2022,135(3):2101-2110. |
| 14 | BARTON T, MUSILEK P .Probabilistic forecasting of dynamic thermal line rating with temporal correlations[J].International Journal of Electrical Power & Energy Systems,2022,134(4):1074-1087. |
| 15 | DAMINOV I, PROKHOROV A, CAIRE R,et al .Assessment of dynamic transformer rating,considering current and temperature limitations[J].International Journal of Electrical Power & Energy Systems,2021,129(12):1187-1203. |
| 16 | 带电设备红外诊断应用规范: [S]. |
| 17 | 李云红 .基于红外热像仪的温度测量技术及其应用研究[D].哈尔滨:哈尔滨工业大学,2010. |
| 18 | 架空输电线路运行规范: [S]. |
| 19 | 张怡,项中明,马超,等 .电网热稳定输送能力辅助决策系统[J].电网技术,2020,44(5):2000-2008. |
| ZHANG Yi, XIANG Zhongming, MA Chao,et al .Design of aided-decision system to improve thermal stability transport capacity of power grid[J].Power System Technology,2020,44(5):2000-2008. | |
| 20 | 胡剑,熊小伏,王建 .基于热网络模型的架空输电线路径向和周向温度计算方法[J].电工技术学报,2019,34(1):139-152. |
| HU Jian, XIONG Xiaofu, WANG Jian .Radial and circumferential temperature calculation method of overhead transmission lines based on thermal network model[J].Transactions of China Electrotechnical Society,2019,34(1):139-152. | |
| 21 | ZHANG X, YING Z, CHEN Y,et al .A thermal model for calculating axial temperature distribution of overhead conductor under laboratory conditions[J].Electric Power Systems Research,2019,166(15):223-231. |
| 22 | 刘刚,李炀,陈垣,等 .基于电磁-热耦合模型的架空导线温度分布和径向温差的计算与实验验证[J].电力系统保护与控制,2018,46(7):7-13. |
| LIU Gang, LI Yang, CHEN Yuan,et al .Calculation and experiment verification on temperature distribution and radial temperature of overhead transmission line based on electromagnetic-thermal coupling fields[J].Power System Protection and Control,2018,46(7):7-13. | |
| 23 | 杨桢,张士成,杨立 .反射温度补偿法及其实验验证[J].光学精密工程,2010,18(9):1959-1964. |
| YANG Zhen, ZHANG Shicheng, YANG Li .Reflected temperature compensation method and its experimental verification [J].Optics and Precision Engineering,2010,18(9):1959-1964. | |
| 24 | 杨松,李文强,黄旭,等 .基于对流换热系数修正的钢箱梁温度场研究[J].华南理工大学学报(自然科学版),2021,49(4):47-58,64. |
| YANG Song, LI Wenqiang, HUANG Xu,et al .Study on temperature field of steel box girder based on modified convective heast transfer coefficient[J].Journal of South China University of Technology (Natural Science Edition),2021,49(4):47-58,64. | |
| 25 | IEEE standard for calculating the current-temperature relationship of bare overhead conductors:IEEE 738-2012,2012 [S]. |
| 26 | BITYUKO V K, KHUDAK Y I, GUSEIN-ZADE N G .Analytical derivation of the Stefan-Boltzmann law for integral radiance from Planck's law for spectral radiance[J].Bulletin of the Lebedev Physics Institute,2016,45(2):46-50. |
| 27 | 110 kV~750 kV架空输电线路设计规范: [S]. |
/
| 〈 |
|
〉 |