收稿日期: 2022-11-15
网络出版日期: 2023-02-20
基金资助
国家重点研发计划项目(2018YFB1802100);广东省重点领域研发计划项目(2018B030338001);广州市基础研究计划基础与应用基础研究项目(202201010595);广东省教育厅创新人才项目和广东工业大学青年百人项目(220413548)
Fast Multi-View Clustering Based on Uniform Label Matrix
Received date: 2022-11-15
Online published: 2023-02-20
Supported by
the National Key R&D Program of China(2018YFB1802100);the Key-Area R&D Program of Guangdong Province(2018B030338001)
在多视图聚类领域,众多方法直接从原始数据中学习相似矩阵,但是这忽视了原始数据中的噪声所产生的影响;此外,还有一些方法必须对图拉普拉斯矩阵进行特征分解,这导致可解释性的降低且需要k-means等后处理。为解决以上问题,文中提出一种基于统一标签矩阵的快速多视图聚类。首先,从松弛的归一化切割和比率切割的统一观点出发对目标函数增加非负约束;然后,通过指示矩阵对相似矩阵进行结构化图重构,确保获得的图具有强簇内连接和弱簇间连接;此外,通过设置统一的标签矩阵降低迭代次数,从而进一步提升该方法的运行速度;最后,基于交替方向乘子法的策略对问题进行优化求解。算法通过随机选择锚点地址的方法对多视图数据集进行对齐,对齐视图能够大幅提升聚类的精度。在迭代过程中通过使用奇异值分解来替代特征分解,有效地解决了传统谱聚类算法计算复杂度高的问题;通过按行索引指示矩阵的最大元素的列标直接获得标签。在4个真实数据集上的实验结果证明了该算法的有效性,表明其聚类性能优于现有的9种基准算法。
刘怡俊, 王嘉达, 钟仕杰, 等 . 基于统一标签矩阵的快速多视图聚类[J]. 华南理工大学学报(自然科学版), 2023 , 51(9) : 110 -119 . DOI: 10.12141/j.issn.1000-565X.220751
In the field of multi-view clustering, many methods learn the similarity matrix directly from the original data, but this ignores the effect of noise in the original data. In addition, some methods must perform a feature decomposition on the graph Laplacian matrix, which leads to reduced interpretability and requires post-processing such as k-means. To address these issues, this paper proposed a fast multi-view clustering based on a unified label matrix. Firstly, a non-negative constraint was added to the objective function from the unified viewpoint of the normalized cut of the relaxation and the ratio cut. Then, a structured graph reconstruction was performed on the similarity matrix by the indicator matrix to ensure that the obtained graph has strong intra-cluster connections and weak inter-cluster connections. In addition, the number of iterations was reduced by setting a unified label matrix, thus further improving the speed of the method. Finally, the problem was solved optimally based on an alternating direction multiplication strategy. The algorithm aligns the multi-view dataset by randomly selecting the anchor addresses, and aligning the views can significantly improve the accuracy of clustering. The problem of the high computational complexity of traditional spectral clustering algorithms was effectively solved by using singular value decomposition instead of feature decomposition in the iterative process. Labels were obtained directly by indicating the column labels of the largest element of the matrix by row index. Experimental results on four real datasets demonstrate the effectiveness of the algorithm, and show that its clustering performance outperformed the nine existing benchmark algorithms.
| 1 | KHAN M A, KHAN G A, KHAN J,et al .Multi-view clustering based on multiple manifold regularized non-negative sparse matrix factorization[J].IEEE Access,2022,10:113249-113259. |
| 2 | LIANG Y, HUANG D, WANG C D,et al .Multi-view graph learning by joint modeling of consistency and inconsistency[EB/OL].[2022-06-06]. . |
| 3 | ZHANG G Y, HUANG D, WANG C D .Facilitated low-rank multi-view subspace clustering[J].Knowledge-Based Systems,2023,260:110141/1-12. |
| 4 | TANG C, LI Z, WANG J,et al .Unified one-step multi-view spectral clustering[J].IEEE Transactions on Know-ledge and Data Engineering,2022,35(6):6449-6460. |
| 5 | KUMAR A,RAI P, DAUME III H .Co-regularized multi-view spectral clustering[C]∥Proceedings of the 24th International Conference on Neural Information Processing Systems. NY:Inc.,Red Hook,2011:1413-1421. |
| 6 | ZHAO J, XIE X, XU X,et al .Multi-view learning overview:Recent progress and new challenges[J].Information Fusion,2017,38:43-54. |
| 7 | LI Y, YANG M, ZHANG Z .A survey of multi-view representation learning[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(10):1863-1883. |
| 8 | VALE K M O, GORGONIO F L, ARAUJO Y N,et al .A co-training-based algorithm using confidence values to select instances[C]∥ Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN).Glasgow:IEEE,2020:1-7. |
| 9 | XU J, REN Y, LI G,et al .Deep embedded multi-view clustering with collaborative training[J].Information Sciences,2021,573:279-290. |
| 10 | 夏冬雪,杨燕,王浩,等 .基于邻域多核学习的后融合多视图聚类算法[J].计算机研究与发展,2020,57(8):1627-1638. |
| XIA Dongxue, YANG Yan, WANG Hao,et al .Late fusion multi-view clustering based on local multikernel learning [J].Journal of Computer Research and Development,2020,57(8):1627-1638. | |
| 11 | HU J, PAN Y, LI T,et al .TW-Co-MFC:Two-level weighted collaborative fuzzy clustering based on maximum entropy for multi-view data[J].Tsinghua Science and Technology,2020,26(2):185-198. |
| 12 | BENJAMIN J B M, YANG M S .Weighted multiview possibilistic C-means clustering with L2 regularization[J].IEEE Transactions on Fuzzy Systems,2021,30(5):1357-1370. |
| 13 | ZHANG Z, LIU L, LUO Y,et al .Inductive structure consistent hashing via flexible semantic calibration[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(10):4514-4528. |
| 14 | ZHOU D, BURGES C J C .Spectral clustering and transductive learning with multiple views[C]∥ Proceedings of the 24th International Conference on Machine Learning.New York:Association for Computing Machinery,2007:1159-1166. |
| 15 | CAI X, NIE F, HUANG H,et al .Heterogeneous image feature integration via multi-modal spectral cluste-ring[C]∥ Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs:IEEE Computer Society,2011:1977-1984. |
| 16 | LIU J, WANG C, GAO J,et al .Multi-view clustering via joint nonnegative matrix factorization[C]∥ Proceedings of the 2013 SIAM International Conference on Data Mining (SDM).Philadelphia,PA:Society for Industrial and Applied Mathematics,2013:252-260. |
| 17 | LI Y, NIE F, HUANG H,et al .Large-scale multi-view spectral clustering via bipartite graph[C]∥ Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.Texas:AAAI Press,2015:2750-2756. |
| 18 | ZHAN K, NIE F, WANG J,et al .Multiview consensus graph clustering[J].IEEE Transactions on Image Processing,2018,28(3):1261-1270. |
| 19 | CAI X, NIE F, HUANG H .Multi-view K-means clustering on big data[C]∥ Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence.Beijing:AAAI Press,2013:2598-2604. |
| 20 | XIA R, PAN Y, DU L,et al .Robust multi-view spectral clustering via low-rank and sparse decomposition[C]∥ Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.Québec:AAAI Press,2014:2149-2155. |
| 21 | ZHU X, ZHANG S, HE W,et al .One-step multi-view spectral clustering[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(10):2022-2034. |
| 22 | von LUXBURG U .A tutorial on spectral clustering[J].Statistics and Computing,2007,17(4):395-416. |
| 23 | 孙文雅 .多视图聚类算法研究[D].深圳:深圳大学,2019. |
| 24 | YANG X, LIAO L, YANG Q,et al .Limited-energy output formation for multiagent systems with intermittent interactions[J].Journal of the Franklin Institute,2021,358(13):6462-6489. |
| 25 | SHI D, ZHU L, LI J,et al .Flexible multiview spectral clustering with self-adaptation[J].IEEE Transactions on Cybernetics,2023,53(4):2586-2599. |
| 26 | ZHAN K, CHANG X, GUAN J,et al .Adaptive structure discovery for multimedia analysis using multiple features[J].IEEE Transactions on Cybernetics,2019,49(5):1826-1834. |
| 27 | NIE F, LI J, LI X .Parameter-free auto-weighted multiple graph learning:A framework for multiview cluste-ring and semi-supervised classification[C]∥ Procee-dings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.New York:AAAI Press,2016:1881-1887. |
| 28 | WANG J, LIU Y, YE W .FMvC:Fast multi-view clustering[J].IEEE Access,2023,11:12808-12820. |
/
| 〈 |
|
〉 |