能源、动力与电气工程

系泊形式对浮式风力机动力响应的影响

展开
  • 天津大学 天津市港口与海洋工程重点实验室/水利工程仿真与安全国家重点实验室/建筑工程学院,天津 300350
张若瑜(1981-),女,博士,副教授,主要从事海洋浮式平台及其系泊系统动力响应分析等研究。E-mail:zryu@163.com

收稿日期: 2022-05-04

  网络出版日期: 2023-02-02

基金资助

国家自然科学基金资助项目(52001230);中国博士后科学基金资助项目(2021T140506);天津市自然科学基金资助项目(21JCQNJC00330);上海交通大学海洋工程国家重点实验室开放基金资助项目(GKZD010081);天津市研究生科研创新项目(2022SKY074)

Study on the Effect of Mooring Form on the Dynamic Response of Floating Offshore Wind Turbine

Expand
  • Tianjin Key Laboratory of Port and Ocean Engineering/State Key Laboratory of Hydraulic Engineering Simulation and Safety/School of Civil Engineering,Tianjin University,Tianjin 300350,China
张若瑜(1981-),女,博士,副教授,主要从事海洋浮式平台及其系泊系统动力响应分析等研究。E-mail:zryu@163.com

Received date: 2022-05-04

  Online published: 2023-02-02

Supported by

the National Natural Science Foundation of China(52001230);China Postdoctoral Science Foundation(2021T140506);the Natural Science Foundation of Tianjin(21JCQNJC00330)

摘要

系泊系统是影响浮式风力机动力响应的关键因素,关系到风力机系统的安全与效率。为研究不同系泊系统对浮式风力机动力响应的影响,以一种新型浅吃水型浮式基础为研究对象,基于该基础储备浮力大的特点,分别采用悬链线式与张力腿式两种不同系泊系统,用于海上5 MW漂浮式风力机定位。建立风力机-基础-系泊系统耦合动力学数值模型,基于叶素-动量理论计算气动载荷,运用势流理论计算水动力载荷,采用三维有限元动力分析模型分别计算两种系泊缆张力。基于该耦合数值模型,对两种漂浮式风力机在作业状态下的动力响应特性进行时域计算,计算结果表明:在额定作业海况下,对比悬链线式系泊系统,采用张力腿式系泊的浮式风力机的纵荡运动均值减少0.7 m,垂荡运动幅值减少39%,同时纵摇运动均值和幅值显著降低,采用张力腿式系泊系统的浮式风力机具有更好的基础运动性能,但其系泊缆内张力均值与幅值更大,同时风机输出功率与风轮叶尖变形的变化幅值也更显著。因此,对于文中提出的新型浮式基础,采用张力腿式的系泊方式具有更好的运动性能,但其系泊安全性与发电效率不如采用悬链线式的系泊方式。

本文引用格式

张若瑜, 李耀隆, 李焱, 等 . 系泊形式对浮式风力机动力响应的影响[J]. 华南理工大学学报(自然科学版), 2023 , 51(8) : 80 -88 . DOI: 10.12141/j.issn.1000-565X.220250

Abstract

Mooring system is a key factor affecting the dynamic response of a floating wind turbine, and it is related to the safety and efficiency of the wind turbine system. To study the effect of different mooring systems on the dynamic response of floating wind turbines, this paper took a new type reduced-draft floating foundation as the research object. Based on the feature of large reserve buoyancy, two different mooring systems, namely the catenary lines and the tension legs, were used for positioning the 5 MW floating offshore wind turbines. The turbine-buoy-mooring coupled numerical model was established. The aerodynamic load was calculated based on the blade element momentum theory, the hydrodynamic load was calculated by the potential flow theory, and the tensions in the two kinds of mooring lines were calculated by the three-dimensional finite element dynamic model. Based on this coupled numerical model, the dynamic responses of two kinds of floating wind turbines under the operating state were simulated in the time domain. By comparing the results, it shows that under the rated operating sea conditions and compared with the catenary mooring system, the mean of surge motion of the floating wind turbine with the tension leg mooring system is reduced by 0.7 m, the amplitude of heave motion is reduced by 39%, and the mean and amplitude of pitch motion are reduced significantly. The floating wind turbine with the tension leg mooring system has better motion performance, but its mean and amplitude of the tension in the mooring lines are larger, and the variation amplitude of the output power and the tip deformation of the wind turbine are also more significant. Therefore, for the new floating foundation proposed in this work, the wind turbine with tension legs has better motion performance, but its mooring safety and power generation efficiency are not as good as the turbine with catenary mooring lines.

参考文献

1 CHEN C, MA Y, FAN T .Review of model experimental methods focusing on aerodynamic simulation of floating offshore wind turbines[J].Renewable and Sustainable Energy Reviews2022157:112036/1-13.
2 JAHANI K, LANGLOIS R G, AFAGH F F .Structural dynamics of offshore wind turbines:A review[J].Ocean Engineering2022251:111136/1-17.
3 刘利琴,肖昌水,郭颖,等 .基于Jourdain原理和有限元离散的浮式风机动力响应分析[J].哈尔滨工程大学学报202041(3):309-317.
  LIU Liqin, XIAO Changshui, GUO Ying,et al .Analysis of the dynamic response of a floating wind turbine based on Jourdain principle and a finite element method[J].Journal of Harbin Engineering University202041(3):309-317.
4 BAE Y H, KIM M H, KIM H C .Performance changes of a floating offshore wind turbine with broken mooring line[J].Renewable Energy2017101:364-375.
5 BROMMUNDT M, KRAUSE L, MERZ K,et al .Mooring system optimization for floating wind turbines using frequency domain analysis[J].Energy Procedia201224:289-296.
6 李焱,唐友刚,朱强,等 .考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究[J].工程力学201835(12):229-239.
  LI Yan, TANG Yougang, ZHU Qiang,et al .Study on dynamic response of floating wind turbine based on stretching-bending-torsion coupled nonlinear mooring loads[J].Engineering Mechanics201835(12):229-239.
7 樊天慧,乔东生,欧进萍 .深水悬链锚泊系统等效截断水深优化设计[J].船舶力学201519(5):518-525.
  FAN Tianhui, QIAO Dongsheng, Jinping OU .Optimized design of deepwater catenary mooring system in equivalent truncated water depth[J].Journal of Ship Mechanics201519(5):518-525.
8 冯丽梅,苏威,闫发锁 .张力腿平台筋腱动力特性分析与校验[J].应用科技201744(4):22-27.
  FENG Limei, SU Wei, YAN Fasuo .Study on the dynamic characteristics of TLP tendons with verification [J].Applied Science and Technology201744(4):22-27.
9 吴浩宇,赵永生,何炎平,等 .张力腿浮式风机筋腱失效模式下瞬态响应分析[J].浙江大学学报(工学版)202054(11):2196-2203.
  WU Haoyu, ZHAO Yongsheng, HE Yanping,et al .Transient response analysis of tension-leg-platform floating offshore wind turbine under tendon failure conditions [J].Journal of Zhejiang University (Engineering Science)202054(11):2196-2203.
10 程阳 .南海TLP风机基础水动力响应研究[D].天津:天津大学,2016.
11 张靖晨,李焱,唐友刚,等 .新型浅吃水浮式基础风力机动力响应研究[J].太阳能学报202142(7):378-383.
  ZHANG Jingchen, LI Yan, TANG Yougang,et al .Analysis on dynamic response of new type reduced draft floating foundation turbine[J].Acta Energiae Solaris Sinica202142(7):378-383.
12 李耀隆,李焱,高靖,等 .新型浅吃水SPAR型浮式风力机断缆情况下动力响应分析[J].振动工程学报202336(3):729-736.
  LI Yaolong, LI Yan, GAO Jing, al at .Dynamic response analysis of a new-type reduced draft SPAR-type floating offshore wind turbine under fractured mooring line scenarios[J].Journal of Vibration Engineering202336(3):729-736.
13 JONKMAN J, BUTTERFIELD S, MUSIAL W,et al .Definition of a 5-MW reference wind turbine for offshore system development[R].[S.l.]:U.S.National Renewable Energy Laboratory (NREL),2009.
14 汉森 O L 马丁 .风力机空气动力学[M].肖劲松,译.北京:中国电力出版社,2009.
15 郑崇伟,周林.近10年南海波候特征分析及波浪能研究[J].太阳能学报201233(8):1349-1356.
  ZHENG Chongwei, ZHOU Lin .Wave climate and wave energy analysis of the South China Sea in recent 10 years[J].Acta Energiae Solaris Sinica201233(8):1349-1356.
16 刘铁军,郑崇伟,潘静,等 .中国周边海域海表风场的季节特征、大风频率和极值风速特征分析[J].延边大学学报(自然科学版)201339(2):148-152.
  LIU Tiejun, ZHENG Chongwei, PAN Jing,et al .analysis of seasonal characteristics,gale frequency and extreme wind speed around the China sea[J].Journal of Yanbian University (Natural Science)201339(2):148-152.
17 唐友刚,曲晓奇,李焱,等 .畸形波作用下张力腿浮式风力机动力响应特性[J].海洋工程202139(2):1-11.
  TANG Yougang, QU Xiaoqi, LI Yan,et al .Dynamic response characteristics of TLP type offshore floating wind turbine in freak wave[J].The Ocean Engineering202139(2):1-11.
文章导航

/