能源、动力与电气工程

整体式微通道换热器的性能分析

  • 甘云华 ,
  • 刘润溪 ,
  • 袁辉 ,
  • 刘锋铭 ,
  • 李勇
展开
  • 1.华南理工大学 电力学院, 广东 广州 510640
    2.广西自贸区见炬科技有限公司, 广西 钦州 535000
    3.华南理工大学 机械与汽车工程学院, 广东 广州 510640
甘云华(1979-),男,教授,博士生导师,主要从事微通道传热等研究。

收稿日期: 2022-06-20

  网络出版日期: 2022-09-14

基金资助

广东省基础与应用基础研究基金资助项目(2020B1515020040);中央引导地方科技发展资金项目(桂科ZY22096022);钦州市科学研究与技术开发计划项目(202116601)

Performance Analysis of Integrated Micro-Channel Heat Exchanger

  • GAN Yunhua ,
  • LIU Runxi ,
  • YUAN Hui ,
  • LIU Fengming ,
  • LI Yong
Expand
  • 1.School of Electric Power Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
    2.Guangxi Free Trade Zone Jianju Technology Co. ,Ltd. ,Qinzhou 535000,Guangxi,China
    3.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
甘云华(1979-),男,教授,博士生导师,主要从事微通道传热等研究。

Received date: 2022-06-20

  Online published: 2022-09-14

Supported by

Guangdong Basic and Applied Basic Research Foundation(2020B1515020040);the Project of Central Guidance and Local Science and Technology Development Fund(Guike ZY22096022)

摘要

为了提升整体式微通道换热器的整体性能,建立了整体式微通道换热器的稳态换热模型,研究了结构参数与运行参数对其的影响规律。整体式微通道换热器以R245fa为工作工质,并在实验验证模型准确性的基础上,利用该模型模拟研究了换热器风量和换热器热管间距对系统整体热阻和空气侧压降等参数的影响。研究结果表明,当微通道换热器的蒸发段风量为0.41 m3/s、冷凝段风量为0.21 m3/s时,换热器的系统整体热阻为0.038 0 m2·K/W;随着冷凝段和蒸发段循环风量的增加,微通道换热器空气侧的压降增加,整体热阻均降低;微通道换热器的整体热阻的下降趋势随着风量的增加而逐渐减弱,得出在本研究范围内,蒸发段风量取0.45 m3/s、冷凝段风量取0.69 m3/s为宜;随着整体式微通道换热器热管间距的增加,微通道换热器整体热阻呈上升趋势,微通道换热器在蒸发段空气侧的压降呈下降趋势。当换热器热管间距为6 mm时,微通道换热器综合性能达到最佳。研究结果对通信基站冷却设备设计及微通道换热器结构与控制参数优化设计提供了参考依据。

本文引用格式

甘云华 , 刘润溪 , 袁辉 , 刘锋铭 , 李勇 . 整体式微通道换热器的性能分析[J]. 华南理工大学学报(自然科学版), 2023 , 51(3) : 13 -21 . DOI: 10.12141/j.issn.1000-565X.220389

Abstract

In order to improve the performance of the integrated micro-channel heat exchanger, this study established the steady-state heat transfer model of an integrated micro-channel heat exchanger, and studied the influence law of the structural parameters and operation parameters on it. The integrated micro-channel heat exchanger used R245fa as working medium. It studied the effects of heat exchanger and heat exchanger heat pipe spacing on the total thermal resistance and air-side pressure drop of the system by using the model, which was verified by experiments previously. The results show that when the evaporation section air volume of the integrated micro-channel heat exchanger is 0.41 m3/s, condensing section air volume is 0.21 m3/s and the total thermal resistance of the heat exchanger system is 0.038 0 m2·K/W. With the increase of circulating air volume in the condensing section and the evaporation section, the air-side pressure drop of the micro-channel heat exchanger increases, and the total thermal resistance decreases. The downtrend of the total thermal resistance of the micro-channel heat exchanger decreases gradually with the increase of air volume. In scope of this research, it is concluded that the appropriate air volume in the evaporation section is 0.45 m3/s, and that in the condensation section is 0.69 m3/s. With the increase of the integrated micro-channel heat exchanger heat pipe spacing, the total thermal resistance of the micro-channel heat exchanger increases, and the air-side pressure drop of the micro-channel heat exchanger decreases in the evaporation section. When the heat exchanger heat pipe spacing is 6 mm, the comprehensive performance of the integrated micro-channel heat exchanger is the best. The research results provide a reference for the design of cooling equipment for communication base stations and the optimization of the structure and control parameters of the micro-channel heat exchanger.

参考文献

1 雍培,张宁,慈松,等 .5G通信基站参与需求响应:关键技术与前景展望[J].中国电机工程学报202141(16):5540-5551.
  YONG Pei, ZHANG Ning, Song CI,et al .5G communication base stations participating in demand response:Key technologies and prospects[J].Proceedings of the CSEE202141(16):5540-5551.
2 YAO M L, GAN Y H, LIANG J L,et al .Performance simulation of a heat pipe and refrigerant-based lithiu-mion battery thermal management system coupled with electric vehicle air-conditioning[J].Applied Thermal Engineering2021196:116878-1-13.
3 柏兴应,简弃非,罗立中,等 .均温板在质子交换膜燃料电池堆热管理中的应用[J].华南理工大学学报(自然科学版)202149(2):25-32.
  BAI Xingying, JIAN Qifei, LUO Lizhong,et al .Application of vapor chamber in the thermal management of proton exchange membrane fuel cell stack[J].Journal of South China University of Technology(Natural Science Edition)202149(2):25-32.
4 GAN Y H, HE L F, LIANG J L,et al .A numerical study on the performance of a thermal management system for a battery pack with cylindrical cells based on heat pipes[J].Applied Thermal Engineering2020179:115740-1-10.
5 李勇,徐沛恳,杨世凡,等 .吹胀型铝质均热板的传热性能[J].华南理工大学学报(自然科学版)202048(2):34-41.
  LI Yong, XU Peiken, YANG Shifan,et al .Thermal performance of roll bond aluminum vapor chamber[J].Journal of South China University of Technology (Natural Science Edition)202048(2):34-41.
6 GIBBONS M J,MARENGOM, PERSOONS T .A review of heat pipe technology for foldable electronic devices[J].Applied Thermal Engineering2021194:117087-1-26.
7 ZHOU W J, LI Y, CHEN Z H,et al .Ultra-thin flattened heat pipe with a novel band-shape spiral wovenmesh wick for cooling smartphoness[J].International Journal of Heat and Mass Transfer2020146:118792-1-15.
8 LING L, ZHANG Q, YU Y B,et al .A state-of-the-art review on the application of heat pipe system in data centers[J].Applied Thermal Engineering2021199:117618-1-16.
9 ZHAN B F, SHAO S Q, LIN M, et al .Experimental investigation on ducted hot aisle containment system for racks cooling of data center[J].International Journal of Refrigeration2021127:137-147.
10 WU Y P, JIA J, TIAN D M, et al .Heat transfer performance of microgroove back plate heat pipes with working fluid and heating power[J].Journal of Thermal Science202029:982-991.
11 YANG C Y, WEBB R L .Condensation of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins[J].International Journal of Heat and Mass Transfer199639(4):791-800.
12 葛洋,姜未汀 .微通道换热器的研究及应用现状[J].化工进展201635(S1):10-15.
  GE Yang, JIANG Weiting .The research progress and application of the micro-channel heat exchanger[J].Chemical Industry and Engineering Progress201635(S1):10-15.
13 XIONG T, LIU G Q, HUANG S J,et al .Two-phase flow distribution in parallel flow mini/micro-channel heat exchangers for refrigeration and heat pump systems:A comprehensive review[J].Applied Thermal Engineering2022201:117820-1-23.
14 GARCIA J C S, TANAKA H, GIANNETTI N,et al .Multiobjective geometry optimization of microchannel heat exchanger using real-coded genetic algorithm[J].Applied Thermal Engineering2022202:117821-1-13.
15 HARUN-OR-RASHID M, JEONG J H .Replacement of present conventional condenser of household refrigerator by louver fin micro-channel condenser[J].Arabian Journal for Science and Engineering201944:753-761.
16 XUE L Z, MA G Y, ZHOU F,et al .Operation characteristics of air-air heat pipe inserted plate heat exchanger for heat recovery[J].Energy and Buildings2019185:66-75.
17 ZHANG L Y, LIU Y Y, GUO X,et al .Experimental investigation and economic analysis of gravity heat pipe exchanger applied in communication base station[J].Applied Energy2017194:499-507.
18 SHABGARD H, ALLEN M J, SHARIFI N,et al .Heat pipe heat exchangers and heat sinks:Opportunities,challenges,applications,analysis,and state of the art[J].International Journal of Heat and Mass Transfer201589:138-158.
19 WANG Y W, DONG T, CAO W J,et al .Experimental investigation of the laminar flow and heat transfer performance of a harmonica tube with or without mini-fins[J].Applied Thermal Engineering2020164:114502-1-12.
20 张双,马国远,张思朝,等 .热虹吸管换热器的换热性能测试与分析[J].化工学报201465(S2):83-87.
  ZHANG Shuang, MA Guoyuan, ZHANG Sichao,et al .Heat transfer performance test and analysis of thermosyphon heat exchanger[J].CIESC Journal201465(S2):83-87.
21 LING L, ZHANG Q, YU Y B,et al .Experimental study on the thermal characteristics of micro channel separate heat pipe respect to different filling ratio[J].Applied Thermal Engineering2016102:375-382.
22 沈超,刘玉娟,王竹萱,等 .平行流热管管内两相流动可视化实验研究[J].化工学报202172(5):2506-2513.
  SHEN Chao, LIU Yujuan, WANG Zhuxuan,et al .Visualization experiment of two-phase flow in parallel flow heat pipe[J].CIESC Journal202172(5):2506-2513.
23 LEE S, KANG H, KIM Y .Performance optimization of a hybrid cooler combiningvapor compression and natural circulation cycles[J].International Journal of Refrigeration200932:800-808.
24 XIA G G, ZHUANG D W, DING G L,et al .A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets[J].Applied Energy2020276:115544-1-14.
25 MENG F X, ZHANG Q, LIN Y L,et al .Field study on the performance of a thermosyphon and mechanical refrigeration hybrid cooling system in a 5G telecommunication base station[J].Energy2022252:123744-1-13.
26 杨辉著,文键,童欣,等 .板翅式换热器锯齿型翅片参数的遗传算法优化研究[J].西安交通大学学报201549(12):90-96.
  YANG Huizhu, WEN Jian, TONG Xin,et al .Optimization design for offset fin in plate heat exchanger with genetic algorithm[J].Journal of Xi’an Jiaotong University201549(12):90-96.
27 陶文铨. 数值传热学[M].西安:西安交通大学出版社,2001.
文章导航

/