交通运输工程

分离板对圆柱体涡激振动特性影响的数值分析

展开
  • 1.哈尔滨工程大学 船舶工程学院, 黑龙江 哈尔滨 150001
    2.杭州应用声学研究所, 浙江 杭州 310000
    3.东北林业大学 工程技术学院, 黑龙江 哈尔滨 150040
戴绍仕(1976-),女,副教授,博士生导师,主要从事流-固耦合动力学、湍流数值预报与控制技术研究。

收稿日期: 2021-10-28

  网络出版日期: 2022-05-04

基金资助

黑龙江省自然科学基金资助项目(LH2019E026);黑龙江省重点专项配套项目(GJ2018GJ0036)

Numerical Study on Influence of Attached Rigid Splitter Plate on Vortex-Induced Vibration of Cylinder

Expand
  • 1.College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,Heilongjiang,China
    2.Hangzhou Applied Acoustics Research Institute,Hangzhou 310000,Zhejiang,China
    3.School of Engineering and Technology,Northeast Forestry University,Harbin 150040,Heilongjiang,China
戴绍仕(1976-),女,副教授,博士生导师,主要从事流-固耦合动力学、湍流数值预报与控制技术研究。

Received date: 2021-10-28

  Online published: 2022-05-04

Supported by

the Natural Science Foundation of Heilongjiang Province(LH2019E026);the Key Special Supporting Projects in Heilongjiang Province(GJ2018GJ0036)

摘要

圆柱形结构广泛地存在于自然界及工程界中,因粘性流动分离所诱发的涡激振动抑制问题一直备受国内外学者的密切关注。分离板作为常用的被动流动控制装置,其对圆柱形结构涡激振动的影响和抑制的内在机理还尚待开展深入的研究。文中基于升力振子模型和分离涡法(DES),结合异步迭代算法,采用SIMPLE算法和Newmark-β法对离散的流体和结构方程进行强耦合的数值求解。数值验证了基于分离涡强耦合算法的准确性,开展了不同约化速度下(0<U*<16.67)分离板(无因次流向长度L/D=0.5)对圆柱体单自由度涡激振动的影响研究,讨论分析了分离板对圆柱体尾涡模式、流体力响应、振动响应和频率特性的抑制效果,获得了临界流速。数值研究结果表明:当U*<10时,分离板对圆柱结构的涡激振动有显著的抑制作用,圆柱结构的最大振幅降低了约69%,频率锁定区域变窄,同时旋涡发放频率也明显下降,圆柱结构受到的平均阻力系数、均方根阻力系数和均方根升力系数分别降低了约40%、90%和52%;当U*>10时,分离板的存在会引起显著的驰振现象,圆柱振幅不断地增大;随U*的继续增加,剪切层在分离后又重新附着在分离板上,圆柱从水流中吸取能量且其远大于结构阻尼所消耗的能量,振幅继续增加并超过了光滑圆柱的振幅,圆柱振动显著加剧,分离板不能起到抑制圆柱振动的作用。

本文引用格式

戴绍仕, 张旭阳, 翟田磊, 等 . 分离板对圆柱体涡激振动特性影响的数值分析[J]. 华南理工大学学报(自然科学版), 2022 , 50(10) : 41 -50 . DOI: 10.12141/j.issn.1000-565X.210688

Abstract

Cylindrical structures exist widely in nature and engineering. The problem of suppression of vortex-induced vibration of cylindrical structures caused by viscous flow separation has received close attention in past decades. Splitter plate is commonly used as a passive control device due to its effective suppression of vortex shedding, but it is worth of further research about its influence on the VIV of circular cylinder and internal mechanism of VIV suppression. Herein, combining with lift oscillator model and Detached Eddy Simulation turbulence model (DES) and adapting asynchronous iterative algorithm, numerical computation of strong coupling resolved method were carried out by using SIMPLE algorithm and Newmark-β method to solve the discrete fluid and structural equations. The accuracy of the strong coupling algorithm based on Detached Eddy Simulation was verified, and then the effect of suppression of splitter plate (L/D=0.5) on a cylinder with single degree of freedom vibration was studied when the range of reduced velocity was 0<U*<16.67. Moreover, the suppression effect of the splitter plate on the wake mode, responses of fluid force and vibration, and frequency characteristics of vibrating cylinder was analyzed. The critical velocity was obtained. The numerical results show that the vibration can be well suppressed when U*<10.The maximum vibration amplitude decreases about 69%, lock-in region of frequency becomes narrow and the vortex shedding frequency decreases obviously. The maximum fluid parameters CD,mean,CD,rmsand CL,rms, acting on the cylinder, decrease about 40%, 90% and 52% respectively. For cylinder attached a splitter plate, galloping phenomenon occurs as U*>10. The vibration amplitude of the cylinder keeps increasing. With the continuous increase of U*, the separating shear layer reattaches to the splitter plate again, and the cylinder absorbs energy from the flow, which was far greater than the energy consumed by structural damping. The amplitude conti-nues to increase and exceeded that of the smooth cylinder, so the vibration of the cylinder is more severe and vibration of cylinder cannot be suppressed by splitter plate in this region.

参考文献

1 ZDRAVKOVICH M M .Flow around circular cylinders:Volume 1:Fundamentals [M].New York:Oxford University Press,1997.
2 CHEN W L, XIN D B, XU F,et al .Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control [J].Journal of Fluids and Structures,2013, 42:25-39.
3 WANG C L, TANG H, DUAN F,et al .Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets [J].Journal of Fluids and Structures,2016,60:160-179.
4 SENGA H, LARSEN C M .Forced motion experiments using cylinders with helical strakes [J].Journal of Fluids and Structures,2017,68:279-294.
5 KHORASANCHI M, HUANG S .Instability analysis of deepwater riser with fairings [J].Ocean Engineering,2014,79:26-34.
6 HUERA-HUARTE F J .On splitter plate coverage for suppression of vortex-induced vibrations of flexible cylinders [J].Applied Ocean Research,2014,48:244-249.
7 ROSHKO A .On the development of turbulent wakes from vortex streets [Z].Washington D C:NACA,1953.
8 UNAL M F, ROCKWELL D .On vortex formation from a cylinder. Part 2. Control by splitter-plate interference [J].Journal of Fluid Mechanics,1988,190:491-529.
9 ASSI G, BEARMAN P W, KITNEY N .Low drag solutions for suppressing vortex-induced vibration of circular cylinders [J].Journal of Fluids & Structures,2009,25(4):666-675.
10 LIANG S, WANG J, HU Z .VIV and galloping response of a circular cylinder with rigid detached splitter plates [J].Ocean Engineering,2018,162:176-186.
11 GAO D, HUANG Y, CHEN W L,et al .Control of circular cylinder flow via bilateral splitter plates [J].Physics of Fluids,2019,31(5):057105-1-14.
12 GAO D, CHEN G, HUANG Y,et al .Flow characteristics of a fixed circular cylinder with an upstream splitter plate:On the plate-length sensitivity [J].Experimental Thermal and Fluid Science,2020,117:110135-1-11.
13 HWANG J Y, YANG K S. Drag reduction on a circular cylinder using dual detached splitter plates [J].Journal of Wind Engineering and Industrial Aerodynamics,2007,95(7):551-564.
14 WANG J, HUA L, FEI G,et al .Numerical simulation of flow control on marine riser with attached splitter plate [C]∥ Proceedings of ASME 2010 29th International Conference on Ocean,Offshore and Arctic Engineering.Shanghai:ASME,2010:489-498.
15 SUDHAKAR Y, VENGADESAN S .Vortex shedding characteristics of a circular cylinder with an oscillating wake splitter plate [J].Computers & Fluids,2012,53:40-52.
16 DAI S, YOUNIS B A., ZHANG H,et al .Prediction of vortex shedding suppression from circular cylinders at high Reynolds number using base splitter plates [J].Journal of Wind Engineering and Industrial Aerodynamics,2018,182:115-127.
17 朱仁庆,郑婷婷,李紫晖.带分隔板的海洋立管尾流场数值研究 [J].船舶力学,2014,18(7):746-753.
17 ZHU Ren-qing, ZHENG Ting-ting, LI Zi-hui .Numerical simulation on the wake field of marine riser fitted with a splitter plate [J].Journal of Ship Mechanics,2014,18(7):746-753.
18 睢娟,王嘉松,田启龙 .分离盘控制圆柱涡激振动的数值模拟研究[J].海洋技术学报,2015,34(4):86-91.
18 WEI Juan, WANG Jiasong, TIAN Qilong .Study on the numerical simulation of cylinder vortex-induced vibration controlled by separating plate [J].Ocean Technology,2015,34(4):86-91.
19 韩翔希,冯志强,邱昂,等 .附属分离盘抑制圆柱涡激振动的数值模拟 [J].船舶工程,2017(5):95-101.
19 HAN Xiangxi, FENG Zhiqiang, QIU An,et al .Numerical simulation of cylindrical vortex induced vibration suppressed by separating plate [J].Marine Engineering,2017(5):95-101.
20 SAHU T R, FURQUAN M, JAISWAL Y,et al .Flow-induced vibration of a circular cylinder with rigid splitter plate [J].Journal of Fluids and Structures,2019,89:244-256.
21 ZHU H, LI G, WANG J .Flow-induced vibration of a circular cylinder with splitter plates placed upstream and downstream individually and simultaneously [J].Applied Ocean Research,2020,97:10 2084-1-14.
22 李敏,邓迪,万德成.带附加分隔板细长柔性立管涡激振动的数值模拟 [J].水动力学研究与进展(A辑),2021,36(1):112-120.
22 LI Min, DENG Di, WAN Decheng .Numerical simulation of vortex-induced vibration of a flexible riser with attached splitter plate [J].Chinese Journal of Hydrodynamics,2021,36(1):112-120.
23 MENTER F R .Two-equation eddy-viscosity turbulence models for engineering applications [J].AIAA Journal,1994,32(8):1598-1605.
24 CELIK I B, GHIA U, ROACHE P J,et al .Procedure for estimation and reporting of uncertainty due to discretization in CFD applications [J].Journal of Fluids Engineering,2008,130(7):078001-1-4.
25 KHALAK A, WILLIAMSON C H K .Dynamics of a hydroelastic cylinder with very low mass and damping [J].Journal of Fluids and Structures,1996,10(5):455-472.
26 GUILMINEAU E .Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow [J].Journal of Fluids and Structures,2004,19(4):449-466.
27 BLEVINS R D .Flow-induced vibration [M].Florida:Krieger Publishing Company,2001.
文章导航

/