计算机科学与技术

基于标签深度分析的音乐自动标注算法

展开
  • 华南理工大学 软件学院,广东 广州 510006
王振宇(1967-),男,博士,教授,主要从事云计算、数据挖掘、社会计算研究.

收稿日期: 2018-06-05

  修回日期: 2019-02-20

  网络出版日期: 2019-08-01

基金资助

广东省科技计划项目(2015B010131003);广州市产业技术重大攻关计划项目(201802010025);广州市高校创新 创业教育平台建设重点项目(2019PT103)

Music Auto-tagging Algorithm Based on Deep Analysis on Labels

Expand
  • School of Software Engineering,South China University of Technology,Guangzhou 510006,Guangdong,China
王振宇(1967-),男,博士,教授,主要从事云计算、数据挖掘、社会计算研究.

Received date: 2018-06-05

  Revised date: 2019-02-20

  Online published: 2019-08-01

Supported by

Supported by the Science and Technology Planning Project of Guangdong Province(2015B010131003)

摘要

尽管深度神经网络算法在标签自动标注领域已取得一定的成果,但对于包含大 量噪声标签的真实音乐数据集仍存在自动标注效果差的问题. 为此,文中通过对音乐标签 进行表示学习,挖掘音乐标签与音频特征之间的潜在关系,提出了基于标签深度分析的音 乐自动标注算法. 该算法先通过多层级卷积网络提取音频特征,再通过音乐标签向量的表 示学习来降低噪声数据对音乐自动标注网络的不良影响. 在真实音乐标注数据集上的实 验结果表明,该算法能取得更高的平均受试者特征曲线下面积,标注效果优于其他自动标 注算法.

本文引用格式

王振宇 张睿 高雨轩 萧永乐 . 基于标签深度分析的音乐自动标注算法[J]. 华南理工大学学报(自然科学版), 2019 , 47(8) : 71 -76 . DOI: 10.12141/j.issn.1000-565X.180273

Abstract

Deep neural network algorithms have made breakthroughs in automatic labeling tasks,but it is still hard to solve the noise data problem in real music dataset. A music auto-tagging algorithm based on deep analysis on labels (DAL) which captures the potential relationship between audio features and music tags was proposed. The algorithm first extracts the audio features through a multi-level convolutional network,and then learn the vector repre- sentation of music tags to reduce the adverse effects of noise data. The experimental results show that the proposed algorithm can achieve higher mean area under receiver operating characteristic curve (AUROCC) and outperform other auto-tagging methods.

参考文献

 
文章导航

/